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Abstract

Trusted Execution Environments (TEEs) protect and isolate programs, sometimes re-

ferred to as enclaves, from all other software executed on the same processor, through

a combination of specialised hardware, microarchitectural design, and cryptography.

They are used both to underpin the security of computing infrastructure that processes

sensitive data, and as a component in the design of efficient privacy-preserving pro-

tocols. The adoption of this technology is driven by a desire to shift trust from the

operator of computing equipment to its manufacturer. A core feature of the architec-

ture is remote attestation, allowing a remote party to verify that a TEE is running a

certain program. While initial industrial deployments often used this to prevent sensi-

tive data from leaking to untrusted clients, e.g. for media content protection, there is a

growing interest in using TEEs to ensure that programs deployed on a cloud server will

not run any unauthorised or outright mailcious computation on sensitive data provided

by users.

TEEs are still a relatively novel technology, with security implications that are still

not fully understood, and whose implementation has been shown to be vulnerable to

many attacks. It is paramount to carefully analyse the guarantees offered by TEEs

when used as a primitive in the construction of application protocols, and how mul-

tiple protocols relying on TEEs might interact with each other when composed. We

approach this task using the tools of the cryptographic literature. In particular, we use

the universal composability (UC) framework to examine a high-level formalisation of

TEEs that supports composition without delving into the specific of implementation or

different architectural choices.

To demonstrate the scope of the task, we follow the construction of a cryptographic

protocol through several stages. We first extend and reformalise IRON (Fisch et al,

CCS17), a protocol that provides secure computation in a cloud setting by implement-

ing the functional encryption primitive. Our extension, called Steel, broadens the class

of allowable functions a cloud server can compute, and we prove the security of our

protocol in UC, by using the formalisation of TEEs provided by Pass et al (EURO-

CRYPT17).

We then question the cryptographic assumption of this formalism, showing that it

doesn’t adequately capture existing attacks which would make Steel insecure, such as

state continuity attacks. We address this vulnerability by providing a modular trusted

execution abstraction that can adequately capture TEE implementations with different
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functional and adversarial guarantees, and provides a more flexible attestation mech-

anism. Our new formalism aims to capture existing work in the literature and rescue

previous proofs into a more realistic setting, closer to real-world implementations.

Finally, we show how the Steel protocol can be used as a composable building

block to provide a privacy preserving contact tracing service that bridges the privacy

properties of decentralised contact tracing with the ability to conduct data analytics en-

abled by centralised contact tracing. We construct and prove the protocol in a modular

manner, showcasing the power of universal composability.
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Lay Summary

As the saying goes, “the cloud is just someone else’s computer”. How do we know,

then, that any data we are sending to the cloud is not being misused by whoever con-

trols it? Trusted Execution Environments (TEEs) are a recent technology that could

provide a promising solution. TEEs modify the design of traditional computer hard-

ware to increase isolation between programs running on the same machines, and allow

remote verification that the computer is running a specific program (a process called

attestation).

Cryptography is a field of study that is broadly interested in rigorously proving

the security of a computer system. It usually operates at a high level of abstraction,

employing formal models and mathematical reductions, and relies on certain mathe-

matical assumptions. TEEs provide an interesting tool for cryptographers, as they can

prove that a computer equipped with a TEE “behaves correctly” through attestation.

In this thesis, we use state of the art cryptographic proof techniques to prove that

TEEs can be used to compute any program without revealing the original user input,

providing a cryptographic protocol (a precise recipe with a proof that it behaves cor-

rectly). We use our protocol as a starting point to develop a privacy-preserving contact

tracing system for infectious deseases such as COVID-19, that allows health authori-

ties to discover limited population-wide statistics if authorised by a sufficient number

of users.

While our protocol is secure using the generally accepted abstraction for TEEs

used by cryptographers, we argue that this abstraction does not adequately capture

real-world TEE implementations, and as such does not capture realistic attacks on the

system. We argue that more realistic models are needed to capture both what a TEE

can do and how it is vulnerable to tampering. This would allow protocol designers

to specify more realistic requirements, and we discuss how we can use this model to

strengthen existing TEE implementations.
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Chapter 1

Introduction

Trust is in the eye of the beholder

Balsa, Nissenbaum, and Park [45]
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2 Chapter 1. Introduction

It seems that the first half of the 21st century is a time of low trust. The world is

experiencing severe political and economic challenges that risk upending the geopo-

litical status quo. As misinformation and scams are rife, and historically unassailable

institutions fail to deliver for the majority, many find themselves questioning previ-

ously unshakable beliefs. In an era of general mistrust, computer manufacturers have

promised that Trusted Computing (also known as Confidential Computing 1), a set of

hardware technologies that can measure what software is running on a machine, as a

measure to raise confidence in computers operated by remote parties. The implication

of the technology should be wider-ranging and address pressing societal problems.

But, in the words of philosopher Diego Gambetta, “can we trust trust”? Or Stated

otherwise: Trusted Computing might be trusted, but is it trustworthy?

The adoption of cryptography in a system is often motivated by the argument that

it replaces trust in human weak links, who are prone and can be easily incentivised

to misbehave, with a rigorously proven cryptosystem. Just like game theoretical solu-

tions can minimise the risk of misbehaviour in economic systems, cryptography can

be used as a tool to enforce behaviour in a communication protocol, or minimising

the fallout from misbehaving parties 2. Breaking well-designed cryptography would

require unobtainable levels of computation, such as a breakthrough in quantum com-

puting, or finding a solution to mathematical problems that are generally considered

hard to solve 3. The promise of Trusted Computing is slightly different, in that trust

is underpinned by the manufacturer of the technology, both in making adequate archi-

tectural choices, and in maintaining operational security during the manufacturing and

deployment phases. Trusted Execution Environments, a type of Trusted Computing

technology, specifically claim to isolate programs executed on commodity computers

from other “untrusted” software, and to provide a hardware-based “root of trust” to

verify which program is being executed, a process known as attestation. But how do

these claims of trustworthiness square up to our common understanding of trust? And

is it possible, or socially desirable, to solely rely on technically mediated trust, be it

cryptographic or hardware based?

1In this work we will use the two terms more or less interchangeably, but Trusted Computing can be
seen as applying more strictly to a subset of earlier Confidential Computing technologies (described in
Section 2.2.1)[125]

2hence the motto adopted by some in the Blockchain ecosystem: “in proof we trust” [296]
3or, as critiqued by Munroe [212], a $5 wrench
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The social context of trust. Humans are a social species, a fact that is made evident

by how we organise in societies. As individuals, we are able to specialise, developing a

small number of skills that we sell to the highest bidder, or freely give away. In return,

we rely on the sum total of all other individuals’ skill-sets and labour to ensure that

our needs are met [261]. Over the last few centuries, this has led to the complexity of

the highly industrialised and globally distributed economy that characterises today’s

world, where it is impossible for any individual or single geographical community

to be completely self-reliant. In this context of co-operation, trust is to some degree

a necessary component, which facilitates complex interactions that might otherwise

lead to sub-optimal results[118]. It is the glue, or rather the lubricant [67] that binds

societies together [192]. Indeed, high-trust societies seem to generally be characterised

by stronger economic and social ties [133]. Assigning trust to someone however is an

inherently risk-taking activity that involves the possibility of betrayal, and requires

exposing oneself to vulnerability towards the trustee [41]. When we deem someone

as trustworthy (or untrusworthy), we are assigning a belief on how likely they are (or

not) to respect our offer of vulnerability and not use it to damage, despite being free to

do so [118]. Yet, over the course of history we have spent much energy into devising

strategies to minimise such exposure.

As the scale of these economic interactions have moved from highly localised in-

person interactions in the physical world to global and digitally mediated ones, the

success of a transaction can no longer be assessed by the social context in which it

takes place. Online, are not able to use our finely tuned ability to read each other’s

body language and speech, or see and touch the goods we are purchasing. Rather, trust

has to be mediated through infrastructure and intermediaries we might not have a first

order relationship with, and/or through coercion and economic incentives. Regular

computer users can find it hard to develop mental models of online system’s trust [73].

The nature of trust is tied to the sociological context of the interactions it applies to,

and as such has often changed across time and cultures [293]. The original architecture

of digital communication system that have gone on to form the basis of our current in-

ternet infrastructure were designed for the purpose of freely sharing information among

research institutions [177]. Reliability and interoperability were the primary concern,

overshadowing any considerations of security, namely confidentiality, integrity and

availability. It wasn’t until more people and networks became connected to the nascent

internet infrastructure, and practical demonstration of its vulnerability to abuse took
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place [223] that the threat began to be taken more seriously4. As lending trust to an

entity is naturally an ongoing process that can be eroded over time[264], participants

in the network lost their natural inclination to trust other agents. As a consequence,

stricter security measures were taken in the design of future connect systems, and the

term “trusted” began to refer to the components of a system on which the security pol-

icy relies on, and that can therefore lead to violations of the policy. Thereafter, the

security and cryptography community, while attempting to minimise reliance into any

one entity, began to refer to those minimal components of a system whose behaviour

was expected not to deviate from a specific protocol as Trusted Parties [45].

Trusting the messenger (but not the message, or the interlocutors) As the last

two decades have seen a dramatic increase of people and services connected through

and exposed to the internet, security has become a crucial concern for the economic

and political participation of people in both local and global society. The academia-

driven free culture of knowledge sharing was first complemented and supported, and

then replaced, by targeted advertisement. Commercial activity taking place online cre-

ated economic incentives for algorithmic discovery, the data-driven expansion of the

audience for any product, service or idea, in order to maximise the exposure to such ad-

vertisement, and the conversion into purchases. What began as a simple digital equiv-

alent of a magazine classified ads based on the contextual relevance to the contents

it accompanied, has tuned into an industry with a market valuation higher than most

nations’ gross domestic products[273]. This modern online advertisement ecosystem

has turned the mass collection of (often sensitive) offline and online activities of pretty

much anyone on Earth into a finely tuned automated behavioural prediction mecha-

nism that gives an opportunity to the highest bidder to target groups based on highly

specific demographics and interests. The precision of these inference systems can be

high enough that many of its subject regularly complain that they are being listened to

by their devices [131], whose software and hardware is often controlled by the same

companies. This state of constant surveillance is identified by Zuboff [314] as Surveil-

lance Capitalism, a new stage of market capitalism under which the extraction and pro-

cessing of data from its subjects is the prime economic engine, with those generating

the data being commoditised as resources rather than agents. This has become more

evident in recent years, with the explosion in popularity of Large Language Models,

4Security concerns had already been identified by the military users, and led them to establish sepa-
rate infrastructure [216]
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which further made companies realise the value of data they already held as an asset.

Both the earlier incarnation of targeted advertisement and its more recent “Artificial

Intelligence” embodiment are at the root of a variety of issues, such as the algorithmic

amplification of misinformation [174], that have caused widespread loss of social trust

in online information.

While we might not have a reliable mechanism to trust the “message”, some mech-

anisms have been shown to be effective to establish trust in the infrastructure that drives

the delivery of that content. The construction of cryptographic and decentralised pro-

tocol has been a core feature of the last two decades of electronic communication,

and has done much to advance our trust assurance from the previous paradigm of trust

through authority or contractual obligation (privacy-by-policy [108]), which has re-

peatedly been chipped away by malicious actors [238] and misaligned incentives [167].

Narayanan [213] dubs this flavour of cryptographic work as crypto-for-security.

The philosophical underpinning of this process of “cryptographisation of trust” can

be traced back to the cypherpunk movement [180] which, rooted in anarcho-capitalist

ideas, proposed the adoption of strong encryption technologies as a tool of liberation, in

sharp contrast with the prevailing doctrine of the US in the 1990s of classifying encryp-

tion technology as a munition. The cypherpunk’s goal was to establish an ecosystem of

“trustless trust”, where activities that would have hitherto been mediated by trusted au-

thority would be replaced by publicly designed protocols. Their clashes with western

governments over the spread of cryptography as free speech has been referred to as the

“crypto war”, and resulted in the democratisation of encryption technology and decen-

tralised protocols such as blockchains and “Web3” protocols. One could argued that

the cypherpunk goal of pervasive upending of power has failed [213]: cryptosystems

have not become such a crucial component in organising society, and most people’s ex-

perience of digital technology still involves interacting with a number of trusted parties.

On the other hand, it is also true that the use of cryptography has reached an unprece-

dent level of adoption in commercial systems5. In the last decade in particular, most

major commercial communication services have now adopted some form of End-to-

End Encryption, which prevents the operator of the service from reading or modifying

the messages in transit between sender and receiver. End-to-End encryption is focused

on removing trust from the infrastructure of communication services. However, once

a message has been transmitted, there are no guarantees on what the receiver might

do with the plaintext outside the constraints of the communication channel (or how

5sometimes at the cost of greater centralisation [211, 171]
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the sender might have shared it outside that channel). Beyond the secrecy of private

messaging, there are many compelling reasons to attempt addressing trust at the end-

point of communication. While most consumer software requires the user to agree to

stringent Terms of Service agreements, and most legislatures regulate the (mis)use of

computers, the scale of deployments of some program makes it impossible to enforce

these. Software techniques can be deployed to prevent specific uses of an applica-

tion, and consumer device manufacturers are increasingly trying to lock-down their

devices. A dedicated adversary can however often circumvent software anti-tampering

measures through reverse engineering, leaking key material, network sniffing, or virtu-

alisation. Any software attack can also be easily packaged and distributed to any other

computer, increasing the value of deploying it. While it is tempting to refer to this kind

of policy break by using the terminology of attackers and defenders 6, it is important to

note that circumventing this kind of mechanism can be for the user’s own benefit, as a

way to escape artificial limitations added by a vendor, or to add essential accessibility

features.

Hardware-based technically mediated trust Nonetheless, computer manufacturers

have sought to introduce hardware protection measures to secure the software dis-

tributed by vendors. The advantages of a hardware protection mechanism include the

ability to produce tamperproof hardware mechanisms that could stop functioning when

an attack is detected, the increased difficulty in circumventing the countermeasures

(compared to software ones) due to (more) specialised knowledge needed, and the loss

of economies of scale due to the requirement of conducting physical attacks for each

device. Despite the promise of increased security, the first attempts to produce hard-

ware security mechanisms relied on the design of custom mechanisms, which were

expensive to develop and deploy and could suffer from their own vulnerabilities. At

the turn of the millennium, several technology companies, led by Microsoft, formed

the Trusted Computing Group, in an attempt to create a standardised hardware security

mechanism that would allow vendors to remotely prove the authenticity of a program

running on any computer. The protection mechanism was originally designed to pre-

vent the piracy of digitally distributed media, but as the consortium collected more

members additional usages were proposed, from access control of sensitive data to en-

forcing authorised programs are run on a computer, especially for interacting with a

remote system. The concept of trusted computing received severe backlash [18], with

6which cryptography inherits from its military roots
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the Free Software Foundation dubbing it as “Treacherous Computing”, as it would pre-

vent the owner of computers from being fully in control of their own machines. In his

talk “The coming war on general computation”, Doctorow [120] outlined the risks of

how commercial interests and political fear-mongering might lead to the adoption of

Trusted computing as a censorship measure to prevent “undesirable programs” from

running. Furthermore, concerns were raised on how limiting the authorisation of what

kind of software could be run to a small set of companies could prevent a healthy

competitive market and cementing the incumbents’ dominance [19].

While the Trusted Computing Group’s efforts were eventually scaled back, the

ideas developed in that setting were taken up by successive vendor-specific efforts. In

particular, underpinning the trust of general purpose computers to specific hardware

features remained a popular idea. It is in this setting that CPU architecture vendors

such as Intel started introducing the technology known as Trusted Execution Environ-

ments (TEEs), exemplified by the release of the Software Guard eXtension product

(Intel SGX). SGX is a process isolation technology that uses microarchitectural fea-

tures and cryptography to guarantee the integrity and confidentiality of code and the

data it operates on. More concretely, it allows a CPU to run “trusted” code as a secure

enclave, whose memory is inaccessible to other processes on the same machines. En-

claves can rely on Trusted Computing technologies to prove, in a process called remote

attestation that they are running a specific program to a remote verifier.

It is difficult to draw conclusions on whether Trusted Execution Environments have

been successful. On one hand, we can not point to any widespread commercial deploy-

ment of the technology on consumer devices. The original selling point of SGX was

that it would allow a vendor to distribute sensitive information to an heterogeneous

collection of untrusted consumer devices and prove that they would only execute au-

thorised computations on that data. Realistically, the only use case that has been re-

motely successful has been the encryption of digital media (a practice known as Digital

Rights Management) to enforce copyright protection (such as encrypting UHD video

distributed through Blu-Ray disks or Netflix streaming content [231]). The lack of

more useful applications, and the steady stream of vulnerabilities discovered by re-

searchers, are likely among the reasons Intel discontinued SGX on consumer devices.

At the same time, TEEs are still sold as an effective way to protect sensitive operations

in the setting of cloud computing, with an increasing number of cloud vendors adopt-

ing the technology. This use case has captured the imagination of protocol designers,

with many proposals to use TEEs as a replacement for a trusted third party to imple-
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ment otherwise difficult cryptographic operations. Very recently, it has been advertised

as a key component of Apple’s strategy for providing privacy-first AI applications [1].

Position statement: Cryptographers and TEEs In his sweeping essay The Moral

Character of Cryptographic Work, Rogaway [237] exhorts researchers to work on

crypto-for-privacy problems that benefit everyday people, rather than the institutional

state and corporate surveillance apparatus. In his view, cryptography can be an instru-

ment to shift the balance of power. It is in that spirit that we argue, with this works, that

cryptographers have a dual responsibility when it comes to the development of TEEs

(and security technologies in general). In the first place, we reject the original goals of

the Trusted Computing Group, which would take control away from regular computer

users, and instead explore how the technology can be used to defend them against the

abuse of more powerful (computationally or otherwise) “trusted” entities and force

them to remain accountable. As such, our work is focused on the more recent trend of

building protocols where users interact with cloud computing entities, who they rely

on for performing computation, but do not trust to handle their data and might act ad-

versarially. We see the introduction of TEEs in the server setting as an opportunity

to shift the trust boundary from the server, replacing it with the guarantees provided

by the combination of TEEs and cryptography (although there are some arguments for

why client-side TEEs can still be pursued for legitimate applications [291]).

The other important role for cryptographers is to demystify the claims of commer-

cial security vendors, and provide clean abstractions to validate that proposed solutions

and applications are safely using these technologies. In a landscape where most de-

ployable solutions are driven by industry for commercial motivations, it is hard to go

beyond the marketing copy 7 and fully understand the characteristic of specific prod-

ucts from an objective perspective, when even the vendor themselves can not agree

on definitions of what they are providing [245]. Being able to separate the behaviour

of cryptographic primitives from their implementations is one of the essential require-

ments to reason about the wider constructions they might be component elements of.

One of the techniques favoured by cryptographers is Simulation-based security, which

proves the security of a scheme by comparing it to a high-level ideal object that be-

haves correctly. The work of Pass, Shi, and Tramèr [230] provided the first composable

simulation-based idealisation of TEEs, boiling down its essence to the attested execu-

7another example of misuse of the term beyond Trusted Computing in the cybersecurity industrial
complex is “Zero Trust”[139]
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tion of arbitrary programs. Since their ideal model ignores most implementation details

and the attacks that depend on them, one could argue that a proof in this model would

not really be useful, as we can never fully realise such a perfect implementation. We

take the position that using this type of functionality can still be meaningful, both to

motivate research into better TEEs, and because there are already concrete steps we

can take, through cryptography, to increase the assurances provided by the existing

versions of TEEs.

At this point, it is essential to remark on the limitations that a purely cryptographic

approach to our dual goals of redistributing power and demystifying security claims

will face. First, we note that providing a purely technical solution, like we do, does

nothing besides proving its possibility. For people to fully benefit from cryptographic

designs, they require implementation and adoption. When, as in our case, the threat

model includes service providers, it is not clear what their incentives for willingly

adopting the system would be, when it might cause higher running costs, be more

difficult to deploy and debug, and if their business model relies on surveillance capi-

talist principles. It is beyond the scope of this work to suggest regulatory or economic

incentives to encourage the deployment of privacy-preserving trusted execution tech-

nologies. However, Balsa, Nissenbaum, and Park [45] argues that the adoption of

privacy technologies by a service provider should be seen by the (potential) customers

of privacy technology as a commitment to the value of privacy. An often overlooked

limitations of establishing trust through cryptography is that end users of a service

still need to blindly trust the cryptographers and security experts to appropriately de-

sign and assess the system, and that a deployment, which depends on multiple layers

of infrastructure that are not always fully auditable [286], is successful. Establishing

trust even in fully transparent software infrastructure is a historically hard problem

[274], and there are very concrete concerns in particular around the transparency and

auditability of TEEs in real world deployments [114]. There is a risk that, due to the

gap between theoretical design and real world deployments, we might mislead users

into trusting something that is ultimately not trustworthy.

1.1 Contributions and Structure

This work explores how TEEs can be used to re-establish users’ trust in remote com-

puting facilities they don’t have direct control over, such as public clouds, to perform

computation on sensitive data in a privacy-preserving manner. In particular, we fol-
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low the development of a specific TEE-based protocol to efficiently provide privacy

preserving outsourced computation, with the goal of illustrating the necessary steps

required in proving its security, as well as developing generalisable techniques that can

be applied beyond the scope of this specific protocol.

After giving, in Chapter 2, a more in-depth review on relevant literature, and a

list of pre-existing cryptographic definitions used in the rest of the work, we begin,

in Chapter 3, by formulating a TEE-enabled protocol called Steel, a variant of an ex-

isting protocol [127]. Next, in Chapter 4, we show a weakness in Steel in real world

systems, and explore how to capture more realistic models of attested execution and

their relationship. Finally, in Chapter 5, we show how we can use a variant of Steel

to construct a multi-user privacy-preserving computation to address a specific problem

with wide-scale social implications around issues of trust. We conclude with Chapter 6

to highlight limitations and future directions of our work.

1.1.1 Steel: Composable Hardware-based Stateful and Randomised

Functional Encryption

Cloud computing offers economies of scale for computational resources with ease of

management, elasticity, and fault tolerance, driving further centralization of diverse

applications into a small number of cloud computing providers. While cloud comput-

ing is ubiquitously employed for building modern online service, it also poses security

and privacy risks. Cloud storage and computation are outside the control of the data

owner (and sometimes the data processor) and users currently have no real mechanism

to verify whether the third-party operator, even with good intentions, can handle their

data with confidentiality and integrity guarantees.

There is a rich history of cryptographic work to enable secure computation of sensi-

tive programs remotely. One such techniques is the primitive of Functional Encryption

(FE), introduced by [59]. FE is a generalisation of Attribute/Identify Based Encryp-

tion [257, 242], that enables authorized entities to compute over encrypted data, and

learn the results in the clear. In particular, parties possessing the so-called functional

key, sk f , for the function f , can compute f (x), where x is the plaintext, by applying

the decryption algorithm on sk f and an encryption of x. Access to the functional key

is regulated by a trusted third party.

FE is a very powerful primitive but in practice highly non-trivial to construct. Matt

and Maurer [203] show (building on [9]) that composable functional encryption (CFE)
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is impossible to achieve in the standard model, but achievable in the random oracle

model. For another important variant of the primitive, namely, randomized functional

encryption, existing constructions [8, 146, 169], are limited in the sense that they re-

quire a new functional key for each invocation of the function, i.e., decryptions with

the same functional key always return the same output. Finally, existing notions of

FE only capture stateless functionalities. Motivated by the inefficiency of existing

instantiations of FE for arbitrary functions, Fisch et al. [127] propose Iron, a practi-

cally implementable protocol that realises FE using a TEE, and is proven secure in the

game-based setting.

Taking Iron as a starting point, we propose to deal with the above limitations by

constructing a TEE-based protocol that allows to compute FE for a broader class of

functionalities under the strongest notion of composable security. Namely we define

a generalisation of Functional Encryption to arbitrary Stateful and Randomised func-

tionalities (FESR), that subsumes multi-client FE (which allows multiple parties to

independently generate ciphertexts [96]) and enables cryptographic computations in a

natural way, due to the availability of internal randomness. We provide a definition of

FESR using Universal Composability (UC) [75], a simulation-based proof technique

that allows reusing ideal functionalities as building blocks of bigger protocols, without

having to prove the security of each implementation in its new context. We extend

the protocol of Fisch et al. [127] to capture the new notion into the Steel protocol. To

prove that Steel realises FESR, we uplift the TEE idealisation of Pass, Shi, and Tramer

[229] into the latest version of the standard UC model [75, Version of 2020], using

the Universal Composition with Global Subroutine (UCGS) extension of [37]. Our

security proof shows that one can satisfy a FE ideal functionality as defined in [203],

relying on hardware instead of Random Oracles, and for the larger function class of

FESR when additionally relying on a common reference string.

1.1.2 AGATE: Augmented modelling of Global Attested Trusted Ex-

ecution

The PST functionality provides a clean abstraction for TEEs that facilitates security

proofs of protocols using Universal Composability. By necessity, such a high level

formulation should not contain precise implementation details for any one TEE plat-

form. Given the vast number of attacks on TEE implementations, it is necessary to

question whether the promised guarantees can be actually delivered. This is an issue
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that most protocol designers that incorporate TEEs in their constructions conveniently

choose to ignore, leaving platform vulnerabilities such as side-channel attacks as out

of scope. While in principle this approach is justifiable, as it would be unreasonable

to ask cryptographers to become experts in the finer details of computer architectures

necessary to create TEEs, a more realistic model is warranted if we are to see the de-

ployment of these protocols in the real world. Replacing the idealisation of a TEE

with a specific instantiation is bound to invalidate any security claim. We give a salient

example by showing how a weakened abstraction that allows malicious adversarial

interference with an enclave’s state could lead to loss of confidentiality in Steel, by

mounting a rollback attack. Previous works [278, 122] have shown that, for some

protocols, a (significantly) weaker TEE implementation can still provide meaningful

guarantees. The existence of these works suggests the need for cryptographers to ar-

ticulate more precisely what aspects of a TEE their protocols will rely on. Articulation

requires an appropriate language; our goal for this chapter is to create one.

We augment the ideal PST functionality with three “units of meaning” that can be

modularly selected to provide different TEE guarantees: features, attacks, and attesta-

tion contents.

Features model the high level (trusted) interface available to programs executed

within a TEE to interact with the untrusted portions of the machine or the outside

world. The implementation of a feature might be implemented through a specific hard-

ware modifications to the CPU architecture, trusted firmware, a cryptographic protocol

between multiple enclaves and remote parties, or a combination thereof. As such, we

give the enclave program access to “oracles” (an abstraction of a trusted interface) for

the available features.

Attacks are also represented as abstract oracles, available to the adversary when

interacting with the ideal TEE functionality. When constructing protocols that interact

with TEEs, the attacker is generally modelled as the party that is executing an enclave

on their local machine. As such, we give the attacker the option of passing additionally

malicious control instruction along with any input to the enclave, and explicitly state

in the formulation how a call to that oracle will affect the internal enclave state.

The content of Attestation that are transmitted to a remote verifier to certify the

authenticity of the installed program are defined as a function over the state of the

enclave (its measurement) and is bound to the TEE instance it runs on. The PST model

has a rigid definition of attestation, with its guarantees inspired by the earliest scheme

adopted by Intel SGX. Our formulation is more abstract and allows us to adopt a wider



1.1. Contributions and Structure 13

class of measurements and attestation properties.

Our modelling of these interfaces is presented in a modular fashion, with a shared

baseline abstraction that provides an interface to parties interacting with TEEs. For

each instantiation of a TEEs, we capture its unique combination of features, attacks and

attestation through a combination of UC “shells”, a modelling construct that allows us

to reason about the interface of the enclave without the need to analyse the specific

applications it is running. We provide several examples of shells that capture pre-

existing formulations of TEEs in the literature, unifying all previous PST variants.

By providing a modular functionality for TEEs, we let the security proof for a pro-

tocol be independent from a concrete TEE instantiation. The protocol designer simply

needs to provide a lower bound on what features the enclave programs require, an

upper bound on how an attacker is allowed to tamper with enclaves, and how much

information about the enclave is provided to other parties (or “leaked” to the environ-

ment) by the attestation. Despite this, we do not want to dismiss the pre-existing work

to prove protocols as secure in the simpler PST model (including our proof of security

for Steel). As such we propose a technique to bridge different versions of the function-

ality, either by adding a new feature oracle, or by removing an attack oracle. We show

how to construct generic “wrapper” protocols which, combined with a less powerful

TEE abstraction, are functionally equivalent to a stronger one, by implementing the

missing features in runtime, or patching the remaining attacks. Showing that a more

realistic TEE formulation, combined with the appropriate wrapper, is equivalent to

PST could allow us to preserve pre-existing proofs under Universal Composability. By

repeatedly showing that the combination of a “weak” TEE with a protocol implements

a “stronger” TEE, we can provide a path to realise a powerful abstraction such as PST

from realistic TEE implementations. We hope that our functionality will provide the

cryptographic community a unifying abstraction to characterise different versions of

TEEs, including those that have already been proposed in the literature, and will help

ananlyse how they relate to each other. This is an important step to enable a more

nuanced discussion on the security claims of TEE vendors and the requirements for

TEE-enabled protocols - but is ultimately still a concern for theorists.
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1.1.3 Glass-Vault: A Generic Accountable Privacy-preserving Ex-

posure Notification Analytics Platform

Our last chapter attempts to satisfy our other call to action of providing protocols that

shift the existing balance of power. Our choice of application is regretfully contingent

to the historical circumstances of when this work took place, and we hope that our

work will not need to be put into practice soon. As countries across the world were

ravaged by the COVID-19 pandemic in 2020, a natural response for academics, who

like many at the time had their personal and professional lives deeply affected, was to

reflect on what role they could play in addressing the loss of life and rapid changes

in the way society operated. Cryptographers in particular became involved with the

public debate on what would be appropriate ways to use digital technologies, such as

smartphones, to automate the process of contact tracing (identifying individuals who

were in close proximity to infectious people) and exposure notification (notifying them

of such contact). This Chapter represents our contribution to an already crowded field,

in an attempt to find a balance between giving people control about what data they are

willing to share, and providing public utility.

For a disease with a high risk of transmission among people in close proximity,

contact tracing and exposure notification can be crucial mechanisms to diminish its

spread[91]. Identifying and instructing only those who have potentially contracted the

virus to self-isolate, removes the need to require an entire community to lock down.

This is crucial when combating a pandemic, and early adoption of an adequately de-

signed system could have prevented the destructive effects on people’s (mental and

physical) well-being and countries’ economies that followed the numerous lockdowns

imposed by health authorities. As manual contact tracing requires a ramp-up for hir-

ing and training case workers, and is error prone when contact can be made from a

distance and short periods, researchers have proposed smartphone-based solutions to

improve data collection through automation. Most of the proposed solutions, in part

due to the participation of cryptographers, attempt to implement privacy-preserving

techniques, such as hiding the contact graphs of infected users or adopting designs that

prevent tracking of non-infected users [198]. The role of privacy in those designs was

both a value in and of itself, but was also considered a necessity to engender sufficient

adoption throughout the population [152]. Besides Bluetooth generated contact infor-

mation, there have been a few ad-hoc privacy-preserving solutions that help analyse

other user-originated data, such as location histories to map virus clusters [66], or QR
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code scans to notify anyone who might have been in the same location as infected

individuals [191].

This kind of data analytics, especially if combined with public health records and

wider population statics, can play a crucial role in enabling governments to take ef-

fective and proportional decision making and enhance public health advice. Despite

the importance of this type of solutions, only a few proposals can also preserve user

privacy, and even those suffer from two important limitations.

Firstly, they lack generality, in the sense that for each analytic task, different data

encodings have to be sent to the analyst, which ultimately (i) limits the applications of

such solutions, (ii) increases user-side computation, communication, and storage costs,

and (iii) demands a fresh cryptographic protocol to be designed, defined, and proven

secure and private for every operation type. The solutions proposed in [66, 191] are

examples of such ad-hoc analytic protocols. Instead, it is desirable that different kinds

of user data can be securely collected and transmitted through a unified protocol. In

concrete terms, such a unified protocol would (a) provide a generic framework for sci-

entists and health authorities to focus on the analysis of data without having to design

ad-hoc security protocols and (b) relieve users from installing multiple applications on

their devices to concurrently run data capturing programs, which could cause issues,

especially for users with resource-constrained devices.

Secondly, existing solutions lack accountability, meaning that users are not in con-

trol of what kind of sensitive data is being collected about them by their contact trac-

ing applications. In some of these schemes, the data does not even originate directly

from the users, but from a third-party data collector, e.g., a mobile service provider,

a national health service, or even national security services [16]. Even when health

authorities attempt to limit the access to raw health data for research purposes [14].

individuals are not generally given the possibility to explicitly choose and withdraw

consent on how much and how their data is being used. As privacy legislatures across

the world have increasingly begun to recognise [93] this right, we need to develop

solutions that give patients this level of accountability, while also providing sufficient

analysis for public health purposes.

To address the aforementioned limitations, we propose GlassVault, a new cryp-

tographic protocol. GlassVault is an extension of regular privacy-preserving decen-

tralised contact tracing, where decentralisation roughly means that no central records

are kept about uninfected users. GlassVault additionally allows users to share sensitive

(non-contact tracing) data for analysis.
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In this context, a functional encryption scheme such as Steel offers a compelling

mechanism to address the problem of generality, providing a generic interface to au-

thorise the computation of arbitrary functions on encrypted data, with the authorisation

phase crucially not being required before the data collection phase. The question of

accountability remains unresolved though, as decryption authorisations are entirely

controlled by a trusted authority. The role of the authority is to establish the trust-

worthiness of entities (which in this setting we denote as analysts) requesting func-

tion evaluations, and the kind and scope of functions that should be authorised for a

given level of trust. An obvious option for the role would be that of a data protec-

tion authority, which can investigate the data protection practices of organisations and

levy fines in case these are violated. This solution would not actually give any direct

power to the data subjects, and is ultimately another instance of privacy-by-policy. We

propose, following previous work [96, 4], to democratise the decision of what ana-

lysts are authorised to compute. We remove the FESR key generation role from the

trusted authority, and replace it with a threshold mechanism among the encrypting par-

ties (anyone who is sharing personal data with the system). Finally, it is necessary

to replace the fixed setup phase with a mechanism for parties to dynamically join as

participants (as new users are enrolled). We provide a formal definition for this new

primitive of decentralised and dynamic functional encryption DD-FESR, and extend

the Steel protocol into the corresponding extension DoubleSteel. As the protocol and

functionality maintain similarities with the simpler setting of Chapter 3, our proof of

security is economically constructed in a modular fashion, reusing components of the

previous proofs where the two protocols are the same.

The construction of GlassVault is thus a simple combination of an exposure noti-

fication, of which Canetti et al. [84] provides a UC formalisation, with an instance of

DD-FESR, where all of the users of exposure notification correspond to the DD-FESR

encryptors, and analysts (e.g. government health authorities, universities, or non-profits)

take the role of decryptor. The proof of security for GlassVault justifies our choice of

Universal Composability, by letting us reason at the level of ideal functionalities, with-

out requiring to delve further into the implementation details of the relevant protocols.

As GlassVault provides a powerful general platform to compute data in the context

of a contact tracing protocol, we believe it provides an important bridge between the

paradigms of centralised and decentralised contact tracing, addressing the concerns of

both public utility and privacy.
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1.2 Notation

With any type of work trying to describe a phenomenon or idea formally, there is

a constant tension between precision, readability, and succinctness. Prioritising one

of these dimension is often a matter of taste and accepted convention. Among many

works in the cryptographic literature, particularly around the vein of Universal Compo-

sition, precision often takes a back seat to succinctness, and readability (with varying

degrees of success). This can, however, cause uncertainty on the authors’ intentions

and requires both some amount of extrapolation on the semantics of certain operation,

and filling gaps in the description when certain steps are omitted as obvious (to the

authors). While this could be seen as a foil preventing misuse that might stem from a

surface reading of the work, it is an accepted [20] issue in the security community that

many real world security issues arise between the gap of an academic cryptographic

design and its implementation by practitioners.

In this work and the constituent publications that form its later chapters, we have

opted to prioritise formal precision to minimise the number of ambiguities. While this

might sometimes come into conflict with readability and certainly succinctness, we

provide corresponding explanation in prose whenever a more precise algorithmic def-

inition is presented. We now explain some of the conventions used in our pseudocode

in the remainder of this work.

Data Types We represent boolean values with ⊤,⊥ for True and False (sometimes

1,0). We use standard notation for generic logical operations. Other standard datatypes

include Strings, natural numbers and bitrsings (sequences of 0s and 1s).

Variables are empty until a value is first assigned to them, using notation x← v.

Comparing an empty variable with ⊥ (or ε for strings) returns True. When accessing

data from a variable, or calling a function, if we are not interested in the return value

(or a partion thereof), we assign it to ·.

Data Structures A tuple (or pair) is an ordered collection of data of fixed length (at

least 2). Its elements can be of distinct data types. We construct a tuple τ containing

elements α and β (in that order) using the syntax τ← (α,β)

A list (or array) is a mutable length ordered collection of data of the same data

type. We construct an empty array a with syntax a← [], and new element α is added

via a← a||α. Our syntax for accessing elements of the array is inspired by program-
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ming languages like Python, which allows array indexing and slicing through the same

syntax. In particular, arrays of length |n| can be accessed via an integer {0, . . . ,n−1}
from “left” to “right” (i.e. in the order its elements were added), and via integers in

(−1, . . . ,−n−1). An array slice operation creates a smaller array that includes a sub-

set of the original one. We use syntax a[i : j] to denote the array a slice containing

all elements from index i to index j (exclusive). We can also create a slice by using a

logical operation: for example a[i > 0] will return an array that contains all elements

of a such that a[i] > 0. To generate a list of all integers from 0 to n, inclusive, we use

the notation {0, . . . ,n}.
A set is an unordered data structure that contains a single copy of all its element.

Inserting an item in the set if it is already included does not modify it. An empty set is

denoted by /0 or {}.
A dictionary (or map) is a data structure that links values to a unique key. We use

the notation v← d[k] to indicate that dictionary d stores value v under key k. We can

also access value v using the d.k notation. An empty dictionary is denoted by {}. A

dictionary can store any data structure as its values. Keys are generally integers or

strings, but can also be tuples. In that case, we generally use a comma separated list of

values as a key e.g. d[l,r]. We allow partial matching on a dictionary’s index by using

the notation c ∈ a[b, ·], which returns value c stored for a key tuple whose first item is

b.

We refer to Sections 2.1.2.3 2.3 for additional notation, and the introduction to

Chapter 4 contains some remarks about the notation used in that Chapter. Additionally,

whenever a proof defines some additional notational shorthand, it is defined before the

pseudocode listing.
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This chapter provides an overview of the fundamental prerequisite concepts on

which the rest of the works rely on. We begin with Section 2.1 by giving an overview of

the tools used by cryptographers to rigorously show security, with a particular focus on

Universal Composability, and related extensions that we rely on. Next, in Section 2.2,

we describe the broad topic of Trusted Execution Environments. We begin with some

definition of terms used in this field and historical definitions in Section 2.2.1, and give

a high level description of Intel SGX, a popular TEE, in Section 2.2.2. In Section 2.2.3

we give pointers to the broader literature on TEE applications and attacks, with a par-

ticular focus on surveying the scope of State Continuity attacks (Section 2.2.3.1). In

Section 2.2.4 we summarise previous efforts in formal modelling TEEs, including a

detailed overview of the PST Universally Composable formalisation. We conclude the

Chapter by giving, in Section 2.3, an overview of other cryptographic primitives and

functionalities used in the remainder of this work.

2.1 Provable security

Provable security is an area of study, with its roots in the cryptography community,

that is broadly concerned with systematically showing that a cryptographic algorithm

or a system of interacting programs operates in its prescribed manner even in the pres-

ence of malicious entities. While a variety of other disciplines share its goals, such

as computer security, formal methods, and distributed computing, what distinguishes

provable security is the rigorous definition and specification of both the cryptographic

object under scrutiny and adversarial power. A cryptosystem can be said to be prov-

ably secure if it can be shown to be equivalent to some security definition through a

mathematical reduction to some fundamental computational hardness properties. As

the scope of provable security broadens, it also has to incorporate concerns from some

of the other aforementioned disciplines and find ways to fit their concerns into crypto-

graphic abstractions.

The methodology selected to assess a system greatly influence both the scope and

strength of the established guarantees, as well as the ergonomics of producing the

evidence itself. For the purposes of this work we do not broadly consider techniques

popular in software engineering like automated testing, or the problem of assessing

whether a program correctly implements its specification, because we are interested in

providing higher level notions on how to design secure and trustworthy systems, rather

than assessing a specific implementation. However, we will remark when some of the
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techniques discussed below can be applied to those setting or when discussing relevant

previous work. Rather, we consider exclusively work that primarily models message

passing between different entities as abstract processes, rather than code running on

real or simulated computer hardware and network.

2.1.1 Designing Provably Secure Protocols

We define a cryptographic protocol as a series of algorithmically prescribed opera-

tions between a set of distinct computational processes, the principals (or parties). A

protocol is said to be secure if it satisfies certain guarantees, regardless of a subset

of the principals diverging (in a well defined manner) from their prescribed role, or

any attempts from a third party to tamper with the communication between the exist-

ing principals. The misbehaving principal and tampering third parties are known as

adversaries.

A proof of security for a cryptographic protocol requires a model to represent com-

putation and adversarial powers. The two models most used by cryptographers are the

symbolic, and computational model. The symbolic model (also known as Dolev-Yao,

formal [2], or term-based model) represents computation as a series of objects, with a

well-defined interface that a principal or adversary can interact with. A cryptographic

primitive is an object that can be instantiated by an adversary, but does not allow them

to obtain its internal state or any other information beyond what is provided by the

usage of its interface (a black box). Each primitive might be a term in some associated

relational equations that show what partial information can be gained from interacting

with it using different inputs. This level of generality easily allows automating the

verification of cryptographic properties of a protocol in a non-deterministic setting.

The Computational model represents protocols as executions of Turing Machines,

an idealised version of a computer which manipulates bitstrings. In this setting, a

cryptographic primitive is a function between bitstrings. All principals, including the

adversary, are Turing Machines. The Security parameter represents the length of the

adversary’s input string, which determines its total runtime and memory, and the size

of keys using in the protocol. While security in the symbolic model is a black and white

statement on whether by choosing a particular sequence of invocation of primitives the

adversary can break any properties of the protocol under examination, a proof in the

computational setting is an argument on the probability of an adversary (not) fulfilling

some task. In most cases a security proof will argue that a successful adversary would
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have to violate some computational hardness assumption i.e. compute a program for

which we do not have efficient solutions, or guess a value from a sufficiently large

domain. There are open questions on what type of hardness assumptions are reasonable

to adopt [142], and what kind of cryptography would be impossible if we realised

that certain assumptions were not true in our world [156]. Certain protocols can be

proved to be secure without relying on any hardness assumptions; we call this property

information-theoretical (or unconditional) security. While the Turing Machine might

be a simplistic model of computation, and the computational model ignores most low

level hardware or physical modelling that could be exploited by an adversary in a

real life physical machine, it is still a closer representation on how computing devices

execute operations than the black box objects of the symbolic model, and as such as

any attacks in the symbolic model can be translated into the computational model (the

converse being much more difficult) [2].

A tool in either symbolic or computational models can verify security properties

based on an execution trace, or argue on the equivalence of the protocol with a speci-

fication [57]. For proving equivalence properties in the symbolic model, several types

of process equivalences exists [112]. In the computational model, security arguments

can be structured as a decision problem for the adversary to break some property of

the system, or as a proof of equivalence between the system and its specification In

the first setting, the proof is formulated the game between the adversary and another

entity (sometimes known as the challenger). The adversary wins the game if it can

produce a certain outcome in its interaction with the challenger with some probability.

Security is usually shown through a sequence of games, starting from the definition, to

a game where the property holds trivially. Each game transition (or game-hop) should

be atomic, with the probability of the adversary succeeding being the same or within a

small boundary for each step of the game[258].

In the computational model we often refer to equivalence proofs as indistinguisha-

bility from an ideal functionality. This is an unrealistic perfectly trusted third party that

takes the input of each party protocol and honestly computes the outputs, providing a

perfect specification for the protocol. An equivalence proof for a protocol formulates

a simulator, a machine that acts as the adversary in this ideal world and replicates the

traffic of the real-world protocol, including the attacker’s behaviour. Then, through a

series of reduction assumptions, the cryptographer can show that real and ideal world

are computationally indistinguishable i.e. any attacks that the adversary can carry in

the real world must also be allowable by the ideal functionality. A common reduction
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technique is to provide a sequence of intermediate simulators from the ideal to the

ideal world (or vice-versa), where each step can be justified to be indistinguishable on

its own using game-hopping [189].

We refer the reader to Barbosa et al. [48] for a survey of techniques for automating

security proof in the settings described. Next, we focus on a specific proof systems for

simulation-based security we will be using for the remainder of this work.

2.1.2 Universal Composability

A significant challenge when modelling the security of a certain protocol π is the ability

of capturing how one execution of π interacts with other protocols. If a single copy of

π can be run securely multiple times, with no interactions with other machines, we say

that it is secure under self-composition; when multiple protocols co-exist and interact

with each other, security is proven under general composition. Other factors to take

into account are the number of executions that π supports, whether the set of parties

running the protocols are fixed or unbounded, and how each instance of π is scheduled

(sequentially, when each run begins after the previous one has terminated; parallel,

when multiple runs begin at the same time; or concurrent, where multiple runs can be

arbitrarily interleaved [188].

A variety of theoretical frameworks to guarantee composition in one of these di-

mensions have been formulated [17, 31, 207, 206, 204, 165, 141, 74, 235, 113], but

the most popular one to jointly guarantee all three types of composition in the compu-

tational and indistinguishability setting is the simulation-based Universal Composabil-

ity framework (UC) proposed by Canetti [76] (developed concurrently to the work of

Pfitzmann and Waidner [233]).

UC is based on the computation model of Interactive Turing Machines (ITM) [143]

and allows constructing simulation-based proofs of security in a modular way. Due

to its flexible modelling of communication channels and adversarial capabilities, UC

can capture a broad variety of adversarial scenarios, and a large number of protocols

have been shown to be UC-secure. Moreover, since its introduction the framework

has inspired numerous extensions and variations [205, 32, 173, 153, 72, 78], including

different revisions to the original model (see [75, Appendix B]).
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2.1.2.1 Fundamentals

A succinct but comprehensive summary of the key components of UC can be found

in [37, Section 2] and in [54, Appendix B]. In this section, we give a higher level

overview of the model and discuss conventions adopted in the rest of this work.

A protocol is defined in UC as a set of ITM instances (ITIs) whose unique identity

is composed of a party identifier (PID) and a shared session identifier (SID). We gen-

erally refer to the ITIs that represent the protocol principals as main parties, which can

spawn subroutine that represents portion of code executed by the principal. To allow

separating modelling artefacts from the code of the analysed protocol, a “structured

protocol” divides ITIs into a shell and body component (introduced in [75, Version

of 2018]). The body of the protocol handles the cryptographic operations, and is not

aware of the shell, which is limited to handling modelling related instructions and can

read and modify the contents of the body appropriately. A protocol is executed in the

presence of a probabilistic polynomial time (PPT) bound machine, the environment,

that captures the influence of any computation that might be taking place outwith the

current instance of the analysed protocol. The environment can be seen as initialising

the computation of the protocol, and providing input to each of the protocol princi-

pals and the adversary. The adversary is another PPT-bound machine that is able to

instruct ITIs with special corruption messages to modify their behaviour, through a

dedicated backdoor tape. For the rest of the paper, we assume the convention that any

adversary is a dummy adversary, where its behaviour is to simply forward corruption

messages originated by the environment to protocol parties. Besides the adversarial

backdoor tape, ITIs are able to communicate with each other by writing messages on

some dedicated tapes. These mechanisms should not be seen as equivalent to network

communication but rather as a modelling artefact, while the network model can be

implemented as an ideal functionality (allowing flexibility to model networks with dif-

ferent properties). While the framework does not impose general restrictions on which

ITIs can communicate with each other, there are certain communication topologies that

can be considered “better-formed”, and necessary for certain composition results (such

as subroutine respecting protocols, where all communications to protocol subroutines

have to originate from the protocol main parties or one of their subroutines). To allow

composing our examined protocol, the environment represents external communica-

tion by claiming an external machine’s identity when sending an input to the protocol

parties. An environment is said to be ξ-identity-bounded if the set of identities it can
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claim is restricted by ξ (expressed as a predicate over the system’s state at the time the

environment sends a message claiming an external machine’s identity).

The model of execution of ITI is inherently single-threaded, but allows flexibility in

describing the granularity of operations and how they interleave. Runtime constraints

are satisfied by maintaining a runtime budget for each machine (known as import).

Import can be shared with a machine’s subroutine, allowing arbitrary dynamical sub-

routine nesting without running the risk of exceeding the remaining runtime. The

minimum import considered by UC protocols is the length of the security parameter.

A balanced environment ensures that at any point during the execution of a protocol,

the adversarial import is at least as large as the sum of imports for all other ITIs in the

protocol.

Like other simulation proofs, the basic mechanism for showing UC-security is to

define an ideal functionality, which captures the essential properties of the desired pro-

tocol as being run by a trusted party, and show it to be computationally indistinguish-

able from an execution of the real protocol (UC-emulation). EXECπ,A ,Z is the random

variable representing the output of environment Z for an execution of π in the presence

of adversary A (conversely EXECφ,S ,Z is for the execution of the ideal functionality φ

in the presence of simulator S ).

Theorem 2.1 (UC emulation). For any PPT protocols π,φ and identity predicate ξ, we

say that π ξ-UC-emulates φ (or simply π UC-emulates φ if the identity bound allows

any identity) if for any PPT adversary A there exists a corresponding PPT adversary

S (the simulator), such that for any balanced PPT ξ-identity-bounded environment Z,

it holds that EXECπ,A ,Z ≈ EXECφ,S ,Z

UC-emulation can be used to show that, if we have a protocol π that realises an

ideal functionality F, the security analysis of a new protocol ρ that has π as a subroutine

can be carried out by replacing all of ρ’s call to subroutines running π with calls to ideal

functionality F, which we denote as ρπ→F . This new version of ρ is said to be in the

hybrid model, since its ITIs interact with both other real ITIs and ideal functionalities.

For the replacement to be successful, we require that any party in ρ that calls to a

subroutine in π or F satisfies ξ and does not call instances of π and F in the same

session (we say that the protocol ρ is (π,φ,ξ)-compliant). Additionally, the adversary

should be able to determine whether an ITI in a certain session is part of the protocol

(the protocol is subroutine exposing).
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Theorem 2.2 (UC Composition Theorem). For any PPT protocols ρ,π,φ and predi-

cate ξ, if ρ is (π,φ,ξ)-compliant, φ,π are both subroutine respecting and subroutine

exposing, and π ξ-UC-emulates φ, then ρπ→φ UC-emulates ρ.

Unfortunately, many interesting protocols, such as commitment schemes [79], se-

cure two-party computation [80] or even authenticated channels [77], are not easily

provable in UC in the plain model. We therefore need to add some ideal subroutine

that can represent the cryptographic assumptions required as a block box ideal subrou-

tine. The next section will discuss how hybrid functionalities that share state among

sessions can also be used composably through some tweaks to the UC framework.

2.1.2.2 Globality

While UC provides a powerful paradigm for reusable cryptographic proofs, composi-

tion imposes many restrictions over the base model as outlined in Theorem 2.2. To

address the limitation of the UC theorem of subroutine-respecting interactions, Canetti

and Rabin [81] introduces Universal Composition with Joint-State, a new composition

theorem that allows a single protocol session to be a subroutine of different proto-

cols. This can be used for example to prove the security of different protocols that

use an authenticated channel, where all sessions interacting with the same party share

the signing key. This composition theorem is, however, only valid for static proto-

cols (where the number of shared sessions is already well defined). Canetti et al. [87]

formulate two new variants of Universal Composition, Extended UC and Generalised
1 UC, that allow composition when arbitrary protocol interact with the shared sub-

routine. The formulation of GUC has been widely used in the literature, allowing

modelling of protocols that were previously impossible to prove in plain UC, such as

those that provide deniability. Canetti, Shahaf, and Vald [82] later extended the GUC

composition theorem to allow the replacement of global functionalities with protocols.

Despite its popularity, proving security in GUC is more difficult than in the incompati-

ble plain UC setting, as it requires arguing about all possible protocols rather than just

the one being analysed. Moreover, as basic UC has received multiple updates and fixes

over time, those have not percolated to the GUC formalisation, and the equivalence

between GUC and the simpler EUC theorem (which most security proofs in the global

setting are actually using) has been called into question due to some components of

the framework being underspecified [37]. Camenisch, Drijvers, and Tackmann [71]

1commonly misattributed as Global UC
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also show that neither the UC or GUC composition theorems allow replacing a proto-

col with its ideal functionality if it is both a subroutine of the protocol and one of its

ideal subroutines; they therefore propose a recursive composition theorem for jointly

subroutine respecting functionalities, multi-protocol UC.

Universal Composability with Global Subroutines [36] aims to rectify these issues

by embedding UC emulation in the presence of a global protocol within the standard

UC framework.

To achieve this, a protocol π with access to subroutine γ is replaced by a new

structured protocol µ = M[π,γ], known as the management protocol. The management

protocol is designed to be subroutine-respecting to preserve composition, while allow-

ing the external protocol ρ to access a single instance of π and multiple of γ. µ is a

shell only protocol that uses a directory ITI to redirect external communication from

ρ to the appropriate machines in π or γ (and conversely to the external machine that

should receive a response). The following definition roughly corresponds to the EUC

formulation of global functionalities:

Definition 2.1. For protocols π,φ,γ, we say that π ξ-UC-emulates φ in the presence of

(global subroutine) γ if M[π,γ] ξ-UC-emulates M[φ,γ]

As in the basic UC framework, the composition theorem follows, with some addi-

tional restrictions: π and φ are allowed to break their subroutine- respecting behaviour

to use the global subroutine γ (we say they are γ-subroutine respecting), and γ itself

does not depend on φ as one of its subroutines (we say that γ is φ-regular). These

requirements allow the use of the shared state subroutine without provoking circular

dependencies that would prevent a clean cut replacement 2.

Theorem 2.3 (Universal Composition with Global Subroutines). For any subroutine-

exposing protocols ρ,φ,π,γ where

• γ is subroutine respecting and φ-regular,

• π,φ are γ-subroutine respecting,

• ρ is (π,φ,ξ)-compliant, (π,M[φ,γ],ξ)-compliant and (π,M[π,γ],ξ)-compliant;

if π ξ-UC-emulates φ in the presence of γ (per Definition 2.1), then ρφ→π UC-emulates

ρ.

2This type of recursive composition is implemented in multi-protocol UC [71]; however the compo-
sition theorem of that work is not compatible with Theorem 2.2
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The above theorems can be used to recover EUC statements in the literature by

formulating an appropriate identity bound3. While most of the existing work focus

on ideal functionalities as global subroutine, Badertscher, Hesse, and Zikas [34] show

that UCGS does not universally preserve the composition theorem from [82] to replace

the setup with a potentially interactive protocol using a different setup. In particular,

when replacing a particularly weak global setup G (where adversarial capabilities are

more extensive than the proposed protocol γ that realises it), the simulator S in the em-

ulation of a G-hybrid functionality F by some protocol π might no longer be possible

in the γ-hybrid world, as it can no longer use the attacks allowed by G. Their work

then provides some guidelines on which global setups can be successfully replaced by

a protocol. Namely, an equivalent setup (where protocol γ UC-emulates ideal func-

tionality G, and G UC-emulates γ) can always be replaced, regardless of the context

protocols which use it as a global subroutine. Additionally, replacement is possible if

the simulation strategy of S either avoids using any of the adversarial capabilities of

G (S is an agnostic simulator), or that the adversarial capabilities it does interact with

will be preserved by γ (S is an admissible simulator).

Canetti et al. [86] later observes that the replacement statement also holds if proto-

col γ replaces the protocol that combines G with the simulator from the γ UC-emulates

G experiment, and thus any F using that combined protocol as a global subroutine can

be replaced with γ.

To conclude this section, we note that in the rest of this work, whenever an ideal

functionality calls another (global) ideal subroutine (e.g. provides some input to the

global subroutine on behalf of a specific party), the underlying operation relies on the

intermediary dummy party convention of [36, Definition 4]. Additional remarks about

our notation when we present UC protocols follows.

2.1.2.3 Notation

We now list additional convention taken by our pseudocode for the remainder of this

work. This section is complementary to the earlier description of Section 1.2 and

provides a more precise definition for many of the conventions used to describe UC

protocols in the rest of the work. We hope our notation is generally self-explanatory,

but in case of ambiguity we refer the reader to the following explanation. We might

refer to UC terminology beyond what was described earlier; any such usage is self-

3We will show an example of this by recovering an existing global setup in section 3.4
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contained to this section, but we refer to [75, Section 3.1] for additional context.

Our notation defines ITIs in terms of their behaviour when they are activated and

find a new message on their input tape. We define the code executed when such a

message is received as a subroutine. Some subroutines definitions are not meant to

be triggered by external parties, but are simply used to extract some shared code that

the ITI might need to execute multiple times. In that case, we use the keyword “run”

followed by the subroutine name to denote that the same ITI is executing it. The

ITI is understood to choose which subroutine to execute by pattern matching on the

program definition as specified in the pseudocode, starting from the earliest subroutine

definition i.e. if there are multiple commands that start with the same keyword, it will

try to find the one with the correct arguments starting from the earlier definition. When

the first argument is *, it is taken to be a wildcard, and when font cmd is used, it is

taken to be a variable; , so any subroutine will match (and is therefore typically defined

last).

Our message-passing treatment tends to stay at a higher level than the underlying

UC execution. As such, we omit many details of the ITI behaviour in our protocol

descriptions. We generally describe a subroutine by using the notation “On message

(SUBROUTINENAME,list of subroutine arguments) from party P:” followed by high-

level pseudo code for the ITI execution, in the style of an imperative programming

language. This notation is short for indicating that the machine we are describing

on activation reads from its input type a message of type (P,(SUBROUTINENAME,

list of subroutine arguments)), where P is an object that contains fields pid,sid; and

SUBROUTINENAME corresponds to some code in its program it can execute with

the inputs from the argument list. Conversely, the notation return (MSG,args), as

part of the description of subroutine pseudocode for an ITI M, denotes the end of

the execution of the current subroutine with the issuing an external write request

( f ,M′, t,r,M,m), where destination ITI M′ is the same machine from which it received

input, and m = (MSG,args). In this case, we always set f , the forced-write flag,

to 1; t, the destination tape, to subroutine-output (unless the pseudocode describes

an adversarial machine, in which case t=backdoor); and r, the reveal-sender-id

flag, also set to 1. Keyword abort, or return with no arguments indicate the end of

execution for the current subroutine without issuing a corresponding subroutine output

message.

If M wants to issue an external write request for a destination ITI that is not the

same that initiated the current subroutine execution by passing input to M, we use
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“Send (MSG,args) to M′” to issue a the same message as described above, except for

setting t to input. If the Send instructions is not the last one in the current subroutine

description, the external write request is not issued immediately, but rather queued in

the outgoing message tape for M until the end of the subroutine, or when M next relin-

quishes the activation token. When we use “Send (MSG,args) to M′ and receive (MSG′,

args′)”, M yields activation immediately, and resumes execution the pseudocode from

the same instruction when it next receives message (MSG’,args′) on its subroutine

output tape from the sender. When this happens, the ITI stores its current execution

context (i.e. any intermediate computation on the work tape) somewhere in memory

in a way that it can be restored when activated in this way. Between sending and re-

ceiving the response, the ITI can be activated with any other message on any tape,

although if our current program can not tolerate such concurrency, the ITI might abort

by checking some internal flag. If multiple outgoing messages were sent to the same

M′, we assume that the response includes some unique identifier to allow M to restore

the correct context for which it is responding to4. When M issues an outgoing mes-

sage, and expects the corresponding response to come from a different party, we use

the keyword await , followed by a full description of the behaviour on next activation.

A variable assigned as part of a subroutine does not guarantee that it will be avail-

able to other subroutines, unless it is defined in the State variables table at the start of

the definition. When the same program uses the same identifier across different sub-

routines, they are generally taken to be distinct values, especially if received as part

of a message. Variables first defined within a loop or if branch have their scope local

to that block. Protocol parameters are generally taken to be globally readable to all

protocol parties and their subroutines.

2.1.3 Corruption Models

To prove the security of a protocol, it is important to state what assumptions are being

made about the power of the adversary. UC represents the adversary as a polynomial

probabilistic algorithm with its runtime defined by the security parameter. Addition-

ally, some of the protocol parties are assumed to be corrupted. This implies that either

one of the protocol principals wants to obtain some additional advantage over the other

participants or interfere with the outcome of the protocol, or alternatively that a portion

of the software they are running has been compromised.

4This is not a universally safe assumption to make for any UC protocol, but it is sufficently safe for
the ones analysed in this work



2.2. Trusted Execution Environments 31

One dimension of defining the corruption model is determining which parties are

controlled by the adversary. A protocol is said to be secure against static corruption if

the set of corrupted parties is fixed at the start of the computation. Adaptive corruption

allows the adversary to interactively choose which parties to corrupt during the exe-

cution of the protocol. Mobile corruptions allow the adversary to mark a previously

corrupted party as no longer corrupted. Security proofs will generally include some

constrains, such that the security of the protocol holds only if the adversary has not

corrupted a certain percentage of the total available parties.

The other dimension of corruption models is how corrupted parties can interfere

with the protocol. We generally consider the two models of passive and active corrup-

tion. A passive adversary (also known as honest-but-curious or semi-honest) will not

diverge from the protocol instructions, but is interested in finding out more informa-

tion over what the protocol would normally reveal. An active adversary (also known as

Byzantine) behaves arbitrarily, choosing to drop or replace protocol messages in such

a way as to allow them some advantage.

UC captures different corruption models through different shells. Parties are con-

sidered honest until the adversary sends a special corruption message on an ITI back-

door tape. From that point forward, the shell implements any corruption behaviour,

such as leaking the state of the internal ITI or sending malicious messages to other

protocol parties. Corrupted parties are registered in a special corruption aggregation

ITI, which records a partial identifier of the corrupted ITI (such that the environment is

not able to distinguish between real and ideal world based on the code of corrupted ma-

chines). [75, Section 7.1] describes how to implement shells for a variety of corruption

models.

Some cryptographic works consider each corrupted party to be independent, and

colluding parties that share information with each other are taken as a separate case. As

all corruptions in UC are issued by a single adversary (on behalf of the environment),

all corrupted parties in this setting are considered to be colluding.

2.2 Trusted Execution Environments

Our work focuses on formally describing, using the tools of Provable security, and

UC in particular, the usage of programmable hardware-based Trusted Execution Envi-

ronments. This technology is often misunderstood, due to an abundance of confusing

and ill-defined terminology, a rapidly shifting landscape of competing commercial and
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academic products, and designs with incompatible properties. We now attempt to give

a non-comprehensive overview of the technology to ground the reader with sufficient

context for situating our work into the broader field.

2.2.1 Definitions and History

There is no agreed-upon definition of Trusted Execution Environments, and how they

relate to the broader class of Confidential Computing [245]. In this work, we broadly

conceptualise this technology as the one demonstrated by Intel SGX and related work.

This can be broadly summarised as an architectural design that allows, through specific

changes to the memory architecture and the use of cryptographic techniques, to run ar-

bitrary computer programs on an otherwise untrusted machine, with no loss of integrity

and confidentiality (for code and / or data), and prove to a remote verifier that the TEE

is running such program with the adequate protections (a process known as remote

attestation). The execution context usually takes one of two styles: (i) process-based

TEEs, which run a minimal program with access to shared facilities outside the pro-

tection mechanism such as the operating system kernel; and (ii) virtualisation-based,

where the entirety of a virtualised OS is protected. While (i) attempts to minimise

the Trusted Computing Base (TCB i.e. the surface area of system components whose

failure might lead to a compromise), (ii) is increasingly favoured by TEE vendors due

to the greater ease of the development, despite the larger attack surface. In general, the

threat model addressed by TEEs is the protection of a program, running as an enclave

on a device along other malicious privileged software. The operator of the machine

running the TEE might also be considered adversarial. Most TEE designs however

do not provide protection against physical attacks or guarantee availability (any addi-

tional component to obtain guarantees of the latter can be considered part of a Reliable

Computing Base [234]).

Weinhold et al. [295] identify the crucial definitional component of TEEs as the

ability to provide continuing remote attestation of an enclave over time. They further

break down TEEs into the following constituent elements:

• An execution context for arbitrary programs

• The ability to collect cryptographic evidence (known as measurement) of the

program being executed

• A hardware Root of Trust to assert the veracity of the measurement
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• Memory isolation (at rest and during execution) from other programs, potentially

at high privilege level, running on the same machine

• The ability to run multiple execution contexts on the same machine

• A communication channel between the execution context and untrusted sources

such as I/O devices

Sardar, Fossati, and Frost [247] provide a characterisation of remote and local at-

testation in the setting of TEEs, extending the standards-driven definition of the IETF

RATS (Remote ATtestation ProcedureS ) working group [56]. Attestation is a pro-

tocol between three parties: an attester, a verifier and a relaying party (the last two

often being the same entity). There are four phases to an attestation protocol, each

executed with increasing order of frequency. The first phase, provisioning, takes place

once in the lifetime of a TEE-enabled machine (such as the manufacturing facility) to

hard-code platform specific identity values and secrets. The initialisation phase de-

rives additional secrets during the platform boot sequence. The third phase, attestation

itself, can be broken down into subphases: first the attester generates evidence, then the

verifier runs an evidence appraisal algorithm, and afterwards the relying party runs an

attestation appraisal algorithm. Finally, depending on the success of the appraisal pro-

cess, the relying party makes a trust decision on whether to carry out any trustworthy

operation with the attester.

Feng et al. [125] identify the parties of typical confidential computing applica-

tions as Service Provider, Data Owner, Code Owner, and Client. The Client receives

a verifiable output of running a program designed by the Code Owner, on the Ser-

vice Provider’s infrastructure, with the Data Owner providing the input. While some

of these parties can correspond, Confidential Computing applications should allow all

four parties to be distinct entities that are mutually untrusted.

Precursor technologies The ideas that would lead to the creation of Trusted Exe-

cution Environments long predate the technology’s introduction in it’s current form,

and have led to the development of several earlier designs, often broadly described as

protection modules.

Starting in the late 1970s, computer manufacturers such as IBM [28] developed

multiple generations of purpose-built hardware to isolate cryptographic key material

and accelerate cryptographic operations. We generally refer to this kind of technolo-

gies as Hardware Security Modules (HSM), or security co-processors. In 1980, Best
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[52] proposed the idea of crypto-microprocessors to prevent the unauthorised redistri-

bution of programs or the sensitive data they held by distributing them in encrypted

form and storing the key in a protected section of the CPU. By 1997, Kuhn [170] had

further refined this design to allow mutually untrusted encrypted programs on an un-

trusted operating system to run in encrypted form on a generic CPU with a modified

memory model. Concurrently, Arbaugh, Farber, and Smith [25] proposed underpin-

ning the security of an operating system boot process by introducing a verification

chain for each subsequent component of the system as it is loaded.

The combination of these ideas was a core part of the plans of the Trusted Com-

puting Platform Alliance (later Trusted Computing Group), an industry consortium

formed by Microsoft, Intel, IBM, HP and AMD in 1999. The group promoted the de-

ployment of Trusted Computing (sometimes trustworthy or safer computing), a combi-

nation of hardware and software feature that would allow consumer operating systems

to prove they were running “untampered software”. While the stated goal was the de-

velopment of a more secure version of the Windows operating system that would rely

on Trusted Computing (the Next-Generation Secure Computing Base, code-named

Palladium), it would also enable previously inaccessible measures such as Digital

Rights Management and preventing the execution of unregistered software (such as

pirated programs)[19]. The consortium received much criticism for how their efforts

would limit the ability of computer owners to run what they wanted on their own hard-

ware 5, and while initial efforts were originally scaled back, an outcome of the group

was the standardisation of the Trusted Platform Module (TPM). TPMs combine the

secure cryptographic functions of an HSM with the ability to securely store encryp-

tion keys for memory operations (sealing) with complex policies, and the addition of

anonymous remote attestation capabilities to prove that firmware running on the TPM

and the host platform in general has not been tampered with. TPMs can use their mea-

surement capability to act as the root of trust for a verified boot chain, where each

level of the boot sequence can measure the next, and decryption of memory can be

pinned to an accepted sequence of measurements [227]. This use of TPMs as a trusted

root of trust was commercialised by the release of Intel Trusted eXecution Technol-

ogy (TXT), a CPU feature that allowed proving that a Operating System kernel or

virtual machine hypervisor was loaded in an environment where all of the required

underlying components were running genuine untampered firmware, thus providing

guarantees of launch-time security, but none over runtime security (e.g. any attacks

5as described in our Introduction, and further documented by Anderson [18]
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due to a buffer overflow in the trusted firmware, which includes the complex hyper-

visor cores)[299]. Thus, from the desire of minimising the Trusted Computing Base

(the set of trusted components necessary to ensure the secure operation of a system)

Intel Software Guard eXtension (SGX) and Trusted Execution Environments (TEEs)

were born. For a technical overview to the development of the above technologies and

competing non-Intel designs, we refer the reader to [104, Chapter 4].

TEEs today Without fully jumping into the detail of TEE architectures, which we do

in the next section, the core aspect of the technology is the ability of running trusted

processes along with untrusted ones, including an untrusted operating system or hy-

pervisor. Competitors to SGX for each different CPU architecture have been proposed,

all with slightly different guarantees and components. SGX and TEEs have attracted

much more attention than their predecessor technologies, both in terms of their pro-

posed use cases and the numerous attacks discovered. While receiving much attention

from the academic research community and the press, the same can not be said for

application deployments. Both Intel and ARM, the biggest CPU architecture vendors,

have struggled to persuade developers to write custom software that would run on

their TEEs. Applications can not be trivially ported to enjoy the security benefits of

the technology, and particular care has to be taken to ensure that sensitive data is not

accidentally accessible from untrusted processes. To facilitate development of TEE

applications, a few projects (e.g. [49, 27, 281]) embed a Library OS (in this context

a re-implementation of normally untrusted system calls) within the enclave, to allow

porting existing software without modifications. While a growing number of cloud

computing vendors have explored the adoption of TEEs to secure sensitive workload

of their customers, SGX has been discontinued from consumer CPUs and relegated

to the server market. A new successor technology, Intel Trusted Domain eXtension

(TDX), has been introduced. TDX provides similar guarantees to SGX, but for virtual

machines, thus without requiring software changes to applications, at the cost of an

increased trusted computing base.

Despite the longer timelines of hardware development compared to software, the

landscape of TEEs is moving relatively fast: SGX was first launched in 2015, and

applications of Confidential Computing are an active area of work in both industry and

academia. Several organisations and standard bodies are actively working on providing

industry standards for TEEs and hardware security in general; we note

• The U.S. Federal Information Processing Standards 140 series (FIPS-140) issued
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by NIST [256] specifies the requirement for cryptographic modules (such as

HSMs and TPMs)

• The Trusted Computing Group offers certifications for TPMs and Attestation

protocols

• The GlobalPlatform TEE committee standardises HSMs (Secure Elements) and

TEEs for embedded platform, including ARM TrustZone

• The Confidential Computing Consortium, part of the Linux foundation, stewards

the development of standards and open source projects to enable TEE-driven

confidential computing through a variety of projects at different levels of the

TEE stack

• The IETF TEEP (Trusted Execution Environment Provisioning) and RATS (Re-

mote ATtestation ProcedureS ) working groups are developing standardised pro-

tocols to deploy applications to TEEs [282] and for remote attestation [56]

2.2.2 Architecture

We now detail some of the fundamental architectural components of Intel SGX and its

attestation mechanism to provide an example of how TEEs can be implemented. This

is a high level overview, and we refer an interested reader to Costan and Devadas [104]

for additional details, and to McKeen et al. [208] for an overview of the changes since

introduced by the second major version of SGX (commonly referred to as SGX2).

We note that much of the functionality of SGX and TPMs are interlinked through

common usage of Intel’s Management Engine [239], a technology that has proven to

be controversial for not allowing computer owners to inspect or modify its behaviours

[89] and increasing the attack surface of general purpose computers [241]. Perhaps due

to the controversial nature of the Management Engine, its role in SGX is not mentioned

often in technical documentation.

Intel SGX provides process-based isolation, by allowing developers to write cus-

tom programs called enclaves, whose environment is isolated by the rest of the soft-

ware running on the processor, including the operating system. The Trusted Comput-

ing Base of SGX is limited to microcode instructions that allow enclave execution, and

some architectural enclaves designed by Intel. The adversary SGX defends against is

one that controls all software on the host, but can’t undertake sophisticated physical at-

tacks. SGX supports running multiple concurrent enclaves, including multi-threading.
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The security of SGX relies on a subset of memory on the CPU reserved for stor-

age of enclave programs and their data, and whose access is protected from all other

software (disjoint-memory assumption [175]). While the memory is still managed by

the same mechanisms that allocate untrusted programs, SGX performs certain checks

that prevent invalid usage, such as preventing the same physical memory region from

being allocated to two different enclaves. Within the protected memory region, SGX

enclaves are reserved a custom page cache. Any pages evicted from the cache is stored

to disk in encrypted form by using a symmetric “sealing” key.

The virtual memory for an enclave process is mapped to both a secure memory re-

gion, and insecure memory that belongs to the host process that initialised the enclave.

The former should be used to store any sensitive data, and has to fulfil certain safety

criteria, whereas the latter is used as an interface with non-trusted programs. Since

the loading of memory is performed by the untrusted firmware, enclave developers are

allowed to tag memory section with permissions, which the trusted components ensure

are being respected. The secure memory region also includes space to save a running

enclave’s state when the (untrusted) firmware triggers a hardware exception.

For the purposes of untrusted program, an enclave can be used as the equivalent to

a dynamically loaded library. A host application instructs the CPU to create a new en-

clave, which initialises the appropriate memory region and enclave metadata. The host

can then load code into the memory region, and initialise the enclave using a system-

provided Launch Enclave (code can only be loaded into uninitialised enclaves). Once

initialised, the enclave’s code is executed by switching a thread to a special enclave

mode, which can to access the protected memory region without increasing process

privileges. Enclave mode can be exited synchronously (with the enclave program

yielding back control) or asynchronously (due to a hardware exception), in which case

an exception handler stores the enclave’s state into trusted memory, erases all memory

for the execution context, and yields to the untrusted system software to handle the

exception outside of enclave mode. A similar mechanism is provided to resume the

enclave after such an exception. Additionally, the host can also teardown an enclave

that is not currently running, permanently erasing all of its memory.

Attestation SGX implements an attestation scheme similar to the one enabled by

TPMs, but with the ability to limit the scope of the attestation to a specific enclave

rather than the entire system.

A hash of an enclave’s state at initialisation (including any code and data loaded by
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the host, and any CPU features required by the enclave) is known as a measurement.

Each enclave developer can issue a certificate to sign the measurement with a key tied

to their identity (this is also useful to allow an updated enclave to receive any secrets

held by the old version).

An enclave can prove it is running a certain program to a local verifier (e.g. another

enclave running on the same machine) through a process known as local attestation.

Local attestation produces a Message Authentication Code over the signed enclave

measurement and some arbitrary data chosen by the enclave.

A special purpose architectural enclave, known as the Quoting Enclave, is used to

provide attestation to a remote verifier. The quoting enclave is provisioned (through

a Provisioning Enclave) with an attestation key that depends on the current firmware

version for SGX, and is stored encrypted in non-volatile memory. Later, the quoting

enclave can receive a local attestation from any enclave and, if valid, replace the MAC

value with a signature produced by the attestation key and send the resulting quote to

the verifier.

There are several flavours of attestation protocols that have been used with SGX.

The original Enhanced Privacy ID (EPID) scheme uses a group signature to provide

privacy preserving attestation. The verifier can forward a received quote to the Intel

Attestation Service (IAS), which verifies that it is signed by a valid up-to-date CPU

on behalf of the verifier. The signature schemes ensures that the attestation service

can’t verify the identity of the quoted enclave, or link any quotes to each other. It is

up to the Intel Attestation Service to maintain a revocation list for any compromised

signatures. Intel has officially announced the End-of-Life date for EPID-based Intel

Attestation Service, replacing it with the new Intel Trust Authority service which im-

plements RATS attestation. Another alternative to the Intel Attestation Service is the

Data Center Attestation Primitives (DCAP), which allows decentralising attestation to

any provider. DCAP uses ECDSA signatures and does not support the anonymous

attestation feature of EPID. For the remainder of this work, we consider attestation to

support the anonymity feature.

2.2.2.1 Alternative Designs

While the above architectural overview should give the reader an understanding of

some of the design decisions in SGX, there are many different implementations of

TEEs, each with its own architecture and security guarantees. As a commercially suc-

cessful example, ARM TrustZone [26] is a proprietary extension of the ARM architec-
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ture that allows CPUs to execute secure applications. It provides physical separation

between the memory and execution contexts of a “secure world” and “normal world”,

both running within the same processor. Despite predating Intel SGX, the number of

applications that have been developed in TrustZone has been limited, due to the rel-

atively more closed nature of its developer toolkit, as well as an inflexible memory

model and performance issues. More recently, the new Confidential Computing Ar-

chitecture in ARMv9 CPUs adds secure virtualisation capabilities (akin to Intel TDX)

and additional security features [155].

The open ISA RISC-V has also seen several proposals to add (mostly) process-

based TEE extensions: MIT Sanctum [105], Keystone [176], Multizone [138], Citadel [123],

Mi6 [60], CURE [39], and HECTOR-V [215].

Other commercial based TEE vendors include AMD (SEV-PNP), IBM (Z Secure

Execution), Amazon (AWS Nitro). Schneider et al. [253] provide a more comprehen-

sive list of commercial and academic designs.

Heterogeneous TEEs Both Intel SGX and competitors are strongly tied to the CPU

architecture and its instruction set (ISA). Weinhold et al. [295] propose an ISA-independent

TEE design that allows a modular choice of implementations of some TEE compo-

nents. Ferraiuolo et al. [126] propose Komodo, a software-defined enclave architecture

instantiated under ARM TrustZone

More generally, we use the term heterogeneous TEE to refer to a hybrid TEE archi-

tecture that incorporates non-CPU components in the TCB. The NVIDIA H100 GPUs

includes a confidential computing mode [117], while HIX [159] and Graviton [290] en-

able GPU-based TEEs, through minimal hardware changes to the memory controller

and by loading the GPU drivers in a CPU enclave, respectively. While not designing

a novel heterogeneous TEE architecture, Slalom [277] outlines how the separation of

trusted and untrusted components of a program might be used to provide performant

private and trustworthy GPU acceleration of certain operations along with the CPU

TEE. Similarly, Ghosh et al. [140] and Xia et al. [302] both provide secure mechanisms

for SGX to offload work to a Field-Programmable Gate Array (FPGA) accelerator, and

Zhu et al. [313] and Schneider et al. [252] provide similar mechanisms for constructing

enclaves that can safely rely on different types of accelerators and I/O devices. Other

FPGA-based TEE designs have also been proposed by [222, 232, 308], and [115, 161,

283] all propose mechanism for Arm TEE technologies to securely access GPUs or

FPGAs.
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Other theoretical designs have been proposed to further develop the capabilities

of TEEs. Li, Xia, and Chen [183] introduce the concept of plugin-enclaves, smaller

attested components that can be mapped into multiple larger enclave’s memory to min-

imise resource usage. Similarly, Yu et al. [307] designs a system to selectively share

memory between different enclaves; Park et al. [226] proposes the concept of nested

enclaves to enable fine-grained hierarchical levels of protection to mutually distrusting

enclaves that might need to share resources; and Zhao et al. [311] proposes multi-layer

permission systems for enclave execution and attestation to increase performance in

the enclave creation phase.

2.2.3 Applications and Attacks

Applications Although the commercial aspirations of TEE vendors might not have

been met by real world adoption, there is a wealth of research into the potential use of

TEEs and a growing ecosystem of software to enable it.

Li [184] attempts to keep an up-to-date index of both academic papers and open

source software that relies on TEE technologies. Recent academic work [298, 225]

has surveyed the literature of TEE applications, but this kind of efforts are doomed at

becoming quickly out of date. With that in mind, we do not attempt to replicate the

work of other surveys. Instead, we note the broad categories in which they classify

previous work.

Both surveys classify previous work in the TEE literature along two criteria: what

security goals they try to achieve, and the context they can be used in. The following

security properties (which are further devided into subproperties) are present in both

works: Privacy, Integrity, and Confidentiality. Will and Maziero [298] further adds the

categories of Enclave Management and Authentication, and Paju et al. [225] identifies

Cryptography, Attestation, Blockchain and Decentralisation as distinct categories. Will

and Maziero [298] distinguishes TEE applications into a local and distributed context.

Local TEE applications are used to strengthen the guarantees of Operating Systems,

provide local runtime security to unmodified applications, and develop purpose-built

secure applications. Distributed applications include implementing network infrastruc-

ture, distributed application runtime, data storage and sharing, data analytics and Inter-

net of Things applications. Paju et al. [225] find more than a 100 application use cases,

divided in the categories of Data Analytics, Cloud Computing, Access Control, Data

Protection, Online Payments, Memory Pro- tection, Attestation tools, secure Storage,
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Network Security, secure Channels, Content Sharing, secure Code Offloading, Smart

Contracts, Computer Games, Hardware Accelerators, Formal Methods, Medical Data,

secure System Logging, Web Search, Data trading, and Digital Contracts.

Attacks As a primarily security driven technology, a crucial concern towards the

adoption of TEEs is how well they are able to protect their programs. There are clear

causes of concerns around the effectiveness of TEE architectures, given the number of

attacks that have been discovered since their introduction.

Feng et al. [125] and Schaik et al. [251] categorises the literature of attack vectors

on TEEs into some broad mechanisms: fault injection, transient and speculative ex-

ecution, side channel attacks, system and software vulnerabilities (which include OS

privilege escalation, memory corruption etc) The possible consequence of these kinds

of attacks recorded in the literature include: loss of confidentiality of enclave code and

data; loss of integrity due to tampering with enclave code, faking attestation, or lack

of memory safety guarantees; breaking isolation from other processes; and reverse

engineering.

These surveys also discuss mitigation techniques. Some defenses are provided by

the TEE vendor, whereas some attacks can only be addressed by defensive program-

ming mitigations, which require a library or application update. Other attacks could

be prevented by shifting the boundary between TCB and untrusted code for a specific

TEE architecture

Schaik et al. [251] further notes that Intel issues vulnerability mitigations through

microcode updates bundled through BIOS update for each motherboard. Due to the

inherent risk of damaging a machine with such an update, a high number of CPUs

in the wild do not apply vendor patches, leaving the attestation relying party with the

choice of reducing the pool of attested machines they are willing to interact, or increase

the probability that they might be affected by a vulnerability that has been patched by

the vendor.

More recent surveys analyse the class of power management related attacks in de-

tail Gonidec et al. [145], and classify how the design choices of a TEE architecture

might lead to specific types of attacks [181].

We now examine in detail a specific class of memory guarantees attacks (and their

mitigations) that will be relevant later in this work.
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2.2.3.1 State Continuity

One important property of programs executed on an untrusted host through trusted ex-

ecution is State Continuity, the ability of the trusted program to be run without the

adversary interfering with the scheduling of operations it performs. If state continuity

is not guaranteed, an enclave that encodes state is not truly protected from the host.

To allow an enclave program from resuming after an interruption, most TEE platforms

allow enclave memory to be stored on untrusted non-volatile memory as an encrypted

object, with the decryption key only available to the original enclave. While this mech-

anism is intended to protect confidentiality, the untrusted nature of the storage medium

can lead to state continuity attacks.

Besides the potential for denial of service, there are two types of tightly correlated

attacks that affect state continuity: rollback attacks and forking attacks.

A rollback attack allows the adversary to rewind the internal state of an enclave to

a previous one by interrupting it and restarting it with an old copy of its internal state

(stale response), by forging a new memory state (synthesized request), or by applying

legitimate state updates from the TEE multiple times (replay)[21].

Forking attacks allow the adversary to maintain multiple copies of the same en-

clave, either through cloning [65] or by repeated applications of rollbacks, allowing

the adversary to present inconsistent states to anyone communicating with the enclave.

We also note that Jangid et al. [160] considers a broader notion of state continuity

that also includes the safety of global variables in multi-threaded enclave programs, an

important consideration that is beyond the scope of our work and indeed most of the

existing literature discussed below, which seemingly holds an implicit assumption of

thread-safe execution.

State continuity in earlier protection modules The study of state continuity pre-

cedes trusted execution, and previous works in the context of protected modules at-

tempted to address these attacks. While some work proposed to increase the TCB to

include a wider I/O interface that includes memory storage, a simpler solution relies

on checkpointing memory dumps with the value of a trusted monotonic counter. This

can be implemented through using a TPM [179] or NVRAM as non-volatile memory,

or as a service provided by the TEE platform [90] 6. A monotonic counter should

be consistent, when its value is always equal to the number of times the counter was

6although the counter service is not supported on all versions and operating system combinations for
which the Intel SGX SDK is available [267]
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incremented, and safe, where an attempt to reset the counter can only erase it rather

than reducing the value [197]. Monotonic counters are not sufficient to protect against

forking attacks if the enclave can also be cloned [65].

Parno et al. [228] shows that state continuity can be guaranteed by achieving con-

tinuous storage. In practice, however, these techniques have severe limitations: in-

creased latency, which makes it unsuitable for any application setting requiring high

throughput; and a finite number of updates for the lifetime of the hardware resources.

Thus, a local adversary can readily defeat these security measures by effectively con-

ducting a denial of service attack on its own hardware. The classic approach of 2-step

commitment is also not suitable for ensuring termination in the context of protected

modules [228], as the first phase necessarily reveals the content of the state. Encrypt-

ing the commitment information can result in leaking details about the state or output

through side channels, allowing the adversary to abort the commitment and therefore

rollback.

Additionally, the logic of counter increments and verification can lead to subtle

bugs that could jeopardise integrity or crash resilience. Matetic et al. [200] distin-

guishes between two common techniques, inc-then-store and store-then-inc (also re-

ferred to in other works as increment-and-persist or execute-then-record, and persist-

and-increment or record-then-execute, respectively). As the name implies, the former

triggers an update to the monotonic counter and then stores the new value in untrusted

memory along with the state, while the latter commits state to memory before up-

dating the counter. If the system experiences a crash between the two operations, an

inc-then-store application will not be able to recover, because the monotonic counter

has been increased but no state has been stored for that value by the application. Ad-

ditionally, inc-then-store systems are susceptible to side-channel attacks, where the

adversary might interrupt the computation and reset the state before the counter is up-

dated multiple times. On the other hand, a crash between storage and counter increase

in a store-then-inc application would allow the adversary to replace the previous state.

Jangid et al. [160] shows an attack to a protocol that leverages monotonic counters

to ensure that a certain amount has passed before the enclave can issue a certificate.

Since the vulnerable version of the protocol increases the monotonic counter after the

certificate has been issued, an attacker can block the enclave between these two steps

and use another copy of the enclave to issue a second certificate, bypassing the check.

They address this by incrementing the counter (instead of only reading it) before the

untrusted timer data is unsealed, essentially moving the protocol to inc-then-store..
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Protecting TEEs from State Continuity attacks In the context of TEEs such as

SGX, a number of proposals to handle state continuity attacks involve the usage of ar-

chitectural modifications. Strackx, Jacobs, and Piessens [262] introduce ICE, a novel

rollback protected sealing service against an adversary who controls the CPU’s power

supply. Through hardware modifications, ICE detects when the platform is being pow-

ered down and copies the enclave’s state into the TPM NVRAM. Unlike the naive

monotonic counter approach, NVRAM access is only required at boot and during an

attack, improving the durability of the service (provided the adversary does not sabo-

tage its own hardware). Strackx and Piessens [263] reduces the stress on TPM hard-

ware by implementing an update service that relies on a single bit flip per-update for

deterministic enclaves. Bailleu et al. [43] and Gregor et al. [147] propose a primitive

called Asynchronous trusted monotonic counter, which relies on the client of their Key

Value store system to buffer update values in their own memory as to minimise the

number of counter updates and the window of possible attacks between synchronisa-

tion points. To detect forking attacks, Briongos et al. [65] establishes a protocol based

on cache contention that allows enclaves to detect whether a clone is running on the

same host.

Besides the above proposals relying on architectural changes, another popular ap-

proach to preserve state continuity is to use a distributed protocol. While of course

including a remote counter storage service within the TCB would allow for a simpler

protocol, most of these work assume partially corrupted remote parties.

ADAM-CS (Martin et al. [197]) proposes a distributed network of nodes that use

TPM counters to prevent rollback protection using a store-then-inc technique, sup-

ported by local virtual counters. Their service does not prevent all rollback attacks but

tries to minimise the amount of time in which they are possible.

The Lightweight Collective Memory (LCM) protocol by Brandenburger et al. [62]

guarantees both fork-linearisability and operational stability of a service running in

an enclave on an untrusted server. The former refers to the notion that the untrusted

server can not maintain different views of its clients’ transaction history for different

subset of clients, even if there is no client to client communication; the latter property

ensures that each enclave is aware of whether their state updates has been successfully

distributed between sufficient clients. LCM allows a group of clients interacting with

the same enclave on a remote server to detect whether the server has mounted a roll-

back or forking attack on the enclave. Additionally LCM allows enclave migration to

a different host.
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ROTE (Matetic et al. [200]) is a distributed protocol that allows a honest majority

set of TEE-equipped hosts to maintain a distributed monotonic counter platform within

the context of adversarially controlled network and platform restarts. It provides all-or-

nothing rollback protection (the adversary can only conduct a rollback attack if it resets

every party in the protection ring) for a fixed set of parties. All parties are assumed

to be honest during the setup phase, which includes a trusted third party. Rollback

protection is guaranteed as long as the number of unavailable or malicious parties

(including those that can tamper with enclave outputs) is always less than majority.

Niu et al. [220] claims that the ROTE restart protocol is susceptible to an attack that

creates a parallel protection groups, as enclaves do not check whether they are the latest

running copy on that platform in the view of other participants. Similarly Briongos et

al. [65] notes that if the ROTE protection group members are corrupted just after setup,

they are able to run parallel protection groups by cloning the enclaves on a sufficient

number of platforms.

The Nimble (Angel et al. [21]) protocol uses preexisting distributed crash-fault tol-

erant storage service to guarantee rollback protection for an application running on

an enclave. A set of TEE endorsers, who do not need to run a replication protocol

between them, attest to the client that they are receiving a fresh value from storage.

Nimble satisfies safety as long as a quorum of endorsers is never rolled back, guaran-

teeing linearisability of the storage service under a malicious provider. It also proposes

a reconfiguration protocol to replace the set of endorsers dynamically.

The Enclave-Ledger Interaction (ELI) protocol (Kaptchuk, Green, and Miers [163])

allows an enclave state to be safely outsourced to an append-only secure ledger (such

as a blockchain), as well as the ability to trigger enclave execution based on externals

messages published in the ledger. The protocol essentially describes a technique to

construct stateful and randomised enclave programs with rollback protection from a

stateless deterministic enclave and a ledger resource.

Similarly, Brandenburger et al. [63] leverages a blockchain with final consensus

mechanisms (where it is impossible for ledger transactions to be reverted due to a

fork) to design a private smart contract system that uses TEEs and is not susceptible to

state continuity attacks due to using the ledger as program state.

Unlike the previous two system, NARRATOR (Niu et al. [220]) uses the blockchain

during its initialisation phase only (rather than recording each state transaction on-

chain) to bootstrap a distributed system that can ensure rollback protection for client

TEEs. Their design is similar to that of ROTE, but provides a store-then-inc counter
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(since they assume deterministic programs), and replaces the trusted initialisation phase

with one based on storing each node’s unique platform identifiers on the blockchain,

to avoid the co-existence of multiple nodes on the same platform. Its restart protocol

addresses some shortcomings of ROTE, and setup relies on a single trusted TEE leader

rather than honest parties. The authors note that to ensure state continuity, a weaker

property than consensus is required, as the order of operations of enclaves on the same

platform is not always important.

This is further developed in Dinis, Druschel, and Rodrigues [119], which proposes

a new model of Restart-Rollback Fault Tolerance to capture the integrity properties

of an enclave. A RR Fault Tolerant protocol allows nodes to become unavailable (as

in Crash-Fault Tolerance) and to rollback their local enclave to a previous state, while

maintaining the expected non-byzantine behaviour of enclaves. It provides a technique

to adapt CFT protocols to become RRFT by using an adaptive per-node quorum with

no significant performance loss. The newly RRFT protocols are then used to build a

replicated metadata service for cloud comping (TEEMS) with better performance than

those that rely on Byzantine-Fault Tolerant protocols.

While RRFT might be sufficient to protect against rollback attacks in the consen-

sus setting, there are some indications that it might actually be a lower bound. Despite

several attempts to use protected modules [99, 179, 162, 289, 305] and TEEs in par-

ticular [51, 42, 111, 137, 240, 193] to ensure that CFT protocols can be run without

byzantine behaviour (hybrid BFT protocols), Gupta et al. [150] and Wang et al. [294]

independently show that all such systems’ safety guarantees are undermined by roll-

back attacks. The latter proposes as a solution ENGRAFT, a hybrid BFT protocol that

prevents rollback attacks through TIKZ, a modified version of ROTE running on the

same nodes as ENGRAFT, whose quorum must satisfy the same properties as ROTE.

2.2.4 Modelling

Another issue that might have hurt the adoption of TEEs, especially in the light of the

many vulnerabilities discovered, is that most commercial vendors’ solutions are under-

documented (or use machine-generated, unreadable specifications) and do not clearly

specify the security assumptions they satisfy. As a consequence, much effort has been

spent by the academic community to understand the behaviour of these technology

through reverse engineering or parsing long specifications. In an environment where

it is difficult to assertain the security properties from the vendor information, it is
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Guarantees Counter Ledger Quorum Setup Reconf
ADAM-CS [197] Minimise rb window StI N 0 or N-1 counters TPM N

LCM [62] Fork-Linearisability N/A N N/2 clients Trusted admin T
ROTE [200] BFT ItS N N

2 ,u+f+1 Trusted N
Nimble [21] CFT safety ItS Implements N/2 Honest, TTP Y
ELI [163] Stateful programs ItS Storage ledger untrusted N/A

Hyperledger [63] Final Consensus N Storage ledger Trusted N
NARRATOR [220] CFT safety+liveness StI Idenitities N

2 +1 Untrusted N
TEEMS [119] RRFT ItS N Dynamic Untrusted N

Table 2.1: Classification of rollback protection mechanisms. The Guarantees column
summarises the protocol’s goals. Counter indicates whether the protocol provides as
Store-than-Inc (StI) or Inc-then-Store (ItS) counter. Ledger shows if and how the pro-
tocol makes use of a trusted ledger, such as a blockchain. Quorum indicates how
many honest parties are required for the protocol to succeed. Setup recaps the setup
assumptions for the protocol. Reconf indicates whether it is possible to migrate the
enclave or modify the set of participants (T indicates that reconfiguration is possible
through a Trusted admin).

useful to develop specifications against which it is possible to compare the behaviour

of an implementation. Indeed, Pinto Gouveia et al. [234] argues that, for all its limit,

constructing a reliable TEE will inevitably involve somew level of formal verification.

The majority of work that examines TEEs through formal verification tools, such

as the ones described earlier in Section 2.1, spans well beyond the cryptographic com-

munity. As such, we now give a brief survey of work in this area we are aware of, both

in the realm of traditional proofs and automated model-checking. We classify these

works into two broad categories: works whose aim is the verification of a TEE archi-

tecture (or a custom extension), and those concerned with the security of applications

running on TEEs. We do not survey the rich literature of formalising secure hardware

beyond the scope of TEEs.

Validating TEE designs Companies that develop CPU architectures are generally

not well known for the transparency of the development process, and this extends to

their TEE products. Some of them have however attempted at publishing some of

the formal guarantees for their designs. In [178, 208], Intel researchers address the

issue of concurrency issues in SGX and SGX2, respectively, by providing a model

checker to automatically prove the property of linearisability for its instruction. Fox et

al. [129] combine a variety of formal methods to evaluate the design, implementation,

and runtime guarantees of a trusted components within ARM CCA.

Independently from the vendors’ efforts, a line of research by Sardar et al provides

proofs of security in the symbolic model using the ProVerif tool for various TEE attes-
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tation protocols including EPID [249], Intel DCAP [244], SCONE attestation [246],

Intel TDX [248] and ARM CCA [250] attestation.

Some academic designs for TEEs and TEE augmentations employ formal methods

to provide some guarantees of their safety. For example, the design and implemen-

tation of Komodo [126] are validated through Dafny, through a custom model of the

ARM architecture. Antonino, Derek, and Wołoszyn [22] formulate a technique to

provide additional guarantees to AMD SEV virtual machines through an Intel SGX

enclave, and prove their design satisfies its security guarantees using Tamarin. Crone

[106] constructs a side-channel resilient TEE using the formally verified seL4 micro-

kernel [168]. Busi et al. [70] provides a formal model of the Sancus TEE [221]. In-

terestingly, their model is shown to not adequately model some concrete attacks on

the implementation by Bognár, Bulck, and Piessens [58], highlighting a limitation of

formal methods’ inherent abstraction of a system. To address this result, Busi, Focardi,

and Luccio [69] develop a tool that generates a model through observing direct inter-

action with Sancus programs, and provide guarantees of noninterference (or find an

attack).

Following our previous survey of state continuity attacks in Section 2.2.3.1, we

highlight some relevant works that rely on formal method techniques. [21] machine

checks the proof of their rollback protection protocol using Dafny/IronFleet, and Ah-

man et al. [11] provides a verifiable implementation of the Ariadne [263] rollback

protection protocol in F⋆ [160] studies the behaviour of TEEs in the presence of state

continuity attacks by treating the TCB and enclave programs as the honest parties in

a distributed system in the Dolev-Yao model, with the untrusted code as the malicious

parties.

Security of protocols that rely on TEEs We now list, in no particular order, some of

the works we are aware of that attempts to formally prove the security of applications

and protocols that rely on TEEs.

• Sinha et al. [259] and Sun and Lei [266] propose an Intel SGX application de-

velopment technique, and an ARM TrustZone variant, respectively, where the

trusted component is narrowed down to a well specified interface between the

secure world and the operating system through a security monitor, whose safety

is easy to formalise and verify.

• Xu et al. [304] propose a model in the Tamarin prover to automate security proofs
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of protocols that rely on TEEs.

• Sinha et al. [260] propose a verification toolkit for assessing whether an applica-

tion developed for SGX fulfills the claimed confidentiality and integrity guaran-

tees based on its usage of the SDK, providing one of the first machine-checkable

models of SGX APIs.

• Dokmai et al. [121] reduce leakage resilience their TEE-enabled application to

the safety of the type-system of the Rust programming language

• Antonino, Woloszyn, and Roscoe [23] formulate a new notion of correctness

for enclave execution, and provides a program analysis tool to ensure that the

required conditions are met.

• Vukotic, Rahli, and Esteves-Veríssimo [292] propose a new language to assert

safety property of hybrid fault tolerance protocols (where some of the replicas,

running on SGX, are more trustworthy than others).

• Subramanyan et al. [265] propose the Trusted Abstract Platform, a formal model

of TEEs that captures security against local privileged processes and remote at-

testation. TAP is shown to capture both the Intel SGX and MIT Sanctum ar-

chitectures with a machine checked proof of refinement. Lee et al. [175] later

extend the TAP model to capture memory sharing capabilities between enclaves,

and Gaddamadugu [136] provides a machine checked-proof using this variant.

• Fisch et al. [127] define a game-based model of SGX to prove the security of a

protocol that implements Functional Encryption.

• Barbosa et al. [47] are concerned with the problem of proving the security of

TEE programs in a composable way, and provide a custom game-based security

model that can capture TEE execution and attestation. Jacomme, Kremer, and

Scerri [157] provides a SAPIC/Tamarin machine-checked simplification of this

model, and Bahmani et al. [40] later realise a secure MPC protocol using the

model in a simulation-based proof.

• Lu et al. [190] provides a simulation based security definition for a TEE with a

partial corruption model.

• Pass, Shi, and Tramèr [230] gives a definition of TEEs under the Universal Com-

posability setting (which we described in Section 2.1.2.1).
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Given the desirable composition guarantees of UC, we choose the latter model to

conduct the security analyses in this work. We now provide a detailed overview of

their formalisation.

2.2.4.1 TEEs under Universal Composability

While various works exist to model HSM-like functionality in UC (e.g. see [164]), and

some initial work has been proposed by Canetti et al. [88] to give a UC treatment of

validating the security guarantees of generic hardware constructions (including pro-

tecting against side-channel attacks), Pass, Shi, and Tramèr [230] provide the first UC

formulation of TEEs. Their Gatt functionality (fully reproduced below in Figure 2.1)

is a generalised TEE model that aims to capture architecture independent properties. It

distills the essence of TEEs into attested execution i.e. evaluation of a program with as-

sociated proof of execution. on capturing the concept of attested execution in a general

manner, removing implementation details. Gatt lets a pre-established set of parties,

with local access to a TEE, install and execute arbitrary enclave programs, which pro-

duce anonymous attestation signature over the program output and enclave metadata.

While the environment is able to install their own programs through a corrupted party

and verify the authenticity of an attested output, they learn nothing about the internal

state of an enclave or the identity of the party executing that program. Any implemen-

tation details of the trusted hardware or concrete attestation protocol are abstracted

away from the attested execution formalism. Through its simple signature mechanism,

which collapses local and remote attestation into a single operation, Gatt incorporates

both the roles of attester and verifier into one setup functionality.

The functionality is parameterised with a signature scheme and a registry to capture

all platforms with a TEE. The functionality in Figure 2.1 diverges from the original one

in that we let vk be a global variable, accessible by enclave programs as Gatt.vk. This

allows us to use Gatt for protocols where the enclave program does not trust the caller

to its procedures to pass genuine inputs, making it necessary to conduct the verification

of attestation from within the enclave.

The INSTALL and RESUME subroutines can only be triggered by parties who have

access to TEE hardware (a static set defined as functionality parameter reg); but any

party can obtain the verification key. On enclave installation, its memory contents are

initialised by the specification of its code; this initial memory state is represented by

symbol /0. The unique enclave id is taken to be a software component of the Trusted

Computing Base, generated during installation. The output of computations (through
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Functionality Gatt[Σ, reg,λ]

State variables Description
vk Master verification key, available to enclave programs

msk Master secret key, protected by the hardware
T ← /0 Table for installed programs

On message INITIALIZE from a party P:
let (spk,ssk)← Σ.Gen(1λ),vk← spk,msk← ssk

On message GETPK from a party P:
return vk

On message (INSTALL, idx,prog) from a party P where P.pid ∈ reg:
if P is honest then assert idx= P.sid
generate nonce eid

$←{0,1}λ

store T [eid,P]← (idx,prog, /0)
return eid

On message (RESUME,eid, input) from a party P where P.pid ∈ reg:
let (idx,prog,mem)← T [eid,P], abort if not found
let (output,mem′)← prog(input,mem)
store T [eid,P]← (idx,prog,mem′)
let σ← Σ.Sign(msk,(idx,eid,prog,output)) and return (output,σ)

Figure 2.1: The Gatt functionality of [230]
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resume) consists of the (anonymous) ID of the enclave, the UC session ID, some

unique encoding for the code computed by the enclave (which could be its source

code, or its hash), and the output of the computation itself. Input does not have to be

included in the attested return value, but if security requires parties to verify input, the

function can return it as part of its output.

Gatt is a Global Functionality in GUC [87] where the only meaningful global state

shared between all protocols is the attestation verification key. This is a simplification

over the EPID protocol that removes the key revocation phase. Attestation verification

amounts to simply verifying the output data structure as described through a simple

signature scheme with the globally available (both to machines with and without en-

clave capabilities) public verification key. The signing key is never released by the

functionality, capturing the provisioning mechanism of the SGX system enclaves. The

inclusion of the session ID in the attestation signature ensures that enclaves installed in

different sessions (for which the simulator has no visibility) can not adversely interacts

with the protocol.

As part of their work Pass, Shi, and Tramèr [230] show that TEE-assisted two-party

computation is realisable in UC only if both parties have access to attested execution,

and fair two-party computation is also possible if additionally both secure processors

have access to a trusted clock.

Since its publication, numerous cryptographic protocols that rely on TEEs have

been proven using Gatt in the (G)UC framework [310, 98, 94, 309, 95, 301, 186, 182,

103, 148, 195, 185, 300, 158, 166, 134, 135, 224, 50, 101] or using [194] the Abstract

Cryptography framework [206], and it as provides a basis for formalising TEEs in

property-based definitions [210, 196, 124, 303, 130, 109, 269].

Additionally, some attempts have been made to relax the Gatt functionality for the

purposes of capturing TEE vulnerabilities. Tramer et al. [276] introduced the con-

cept of transparent enclaves to model confidentiality leaks in an enclave program (for-

malised under GUC in [229, Section 8.1] ). The transparent enclave functionality

behaves exactly as Gatt, except that for each RESUME operation, the functionality ad-

ditionally leaks the randomness used by the enclave (allowing the OS to derive any

secret created within the enclave). Since authenticity is still preserved, as the signing

key for the enclave platform is not leaked, transparent enclaves are still useful for prov-

ing various constructions, such as zero-knowledge proofs and commitment schemes.

This is perhaps an excessively strong model, as the use of side channel attacks

might only allow a portion of the memory or randomness to be learned by the adver-
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sary. Dörre, Mechler, and Müller-Quade [122] proposes both a weaker and a stronger

variants. Since the SGX quoting enclave that allows producing attestation does not

have any specific hardening mechanism compared to other enclaves running on the

machine, besides being carefully implemented with side-effect free primitives, the au-

thors argue that it is realistic to model a class of TEEs where side channels do not

affect certain secure operations such as key exchange and symmetric encryption (since

the quoting enclave relies on them for attestation to be successful). As such, they de-

fine almost-transparent enclaves as transparent enclaves with access to side-channel

free implementations of symmetric cryptography primitives and Diffie-Hellman key

exchange operation. On a resume operation, an almost transparent enclave leaks the

random bits used during its execution, the memory of the enclave at the start of the

resume call, and the return value of the cryptographic operations, but crucially not

the randomness used to perform the cryptograhic functions. This allows the adversary

(and the simulator) to learn any values that would have been leaked through any inter-

mediate computation on secrets the enclave had access to. Additionally, they consider

a semi-honest enclave, inspired by the modelling of [190], where the adversary is able

to adaptively leak the list of operations executed by an enclave run by any party re-

gardless of their corruption status. A semi-honest enclave model captures a scenario

where the manufacturer of the TEE might have introduced a backdoor that enables

them to remotely instruct any TEE-enabled machine to record and leak their data. Be-

sides providing the alternative attacker models, their global functionalities are realised

in UCGS, and allow any party to install an enclave (i.e. there is no fixed registry set

reg).

The models of almost-transparent and semi-honest enclaves is motivated by the de-

sign of a protocol to implement one-sided Private Set Intersection (a two-party protocol

where only one party learns the intersection of the two inputs). Dörre, Mechler, and

Müller-Quade construct a protocol that realises one-sided PSI in the almost-transparent

setting where one party is corrupted, and in the semi-honest when sitting where neither

party is corrupted.

2.3 Cryptographic Primitives and functionalities

In this section, we formally define basic notation and definitions of cryptographic

notions, and provide an overview of the primitives and ideal functionalities that are

invoked by our constructions in later chapters. We give an overview for each func-
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tionality that should be sufficient for clarifying its communication interface with any

interacting entities and resulting behaviour. For a more detailed description of the

successive functionalities, we refer readers to the relevant work.

Notation. For a bit-string x, |x| denotes the length of x, and λ denotes the security

parameter. For a distribution D over a set X , x← D, denotes sampling an element

x ∈ X , according to D, and x← X denotes sampling a uniform element x from X .

“≈” denotes computational indistinguishability, and negl(λ) denotes an unspecified,

negligible function, such that negl(λ)≤ 1
λc for all c ∈ R.

For an algorithm A , using y← A(x) we denote the execution of A on input x,

receiving output y. In case A is randomized, y is a random variable and A(x;r) denotes

the execution of A on input x with randomness r. We leave the randomness implicit

for most randomised algorithms, except when relevant. An algorithm A is probabilistic

polynomial-time (PPT) if A is randomized and for any x,r ∈ {0,1}∗, the computation

of A(x;r) terminates in a number of steps polynomial in (|x|+ |r|). We denote by AX

an algorithm that has blackbox access to the oracle X as part of its execution.

2.3.1 Public-key encryption

In the current section we define public-key encryption for chosen plaintext (CPA) and

chosen ciphertext (CCA) attacks. Note that in the latter, the adversary is allowed to

access the decryption oracle even after receiving the challenge ciphertext, usually re-

ferred to as CCA2 secure encryption.

The syntax of a public-key encryption scheme is defined below.

PKE syntax. A public-key encryption (PKE) scheme is a triple of algorithms PKE=

(PGen,Enc,Dec) with the following syntax:

• (Key generation): PGen receives a security parameter λ, and outputs a fresh key

pair (pk,sk)← PGen(1λ).

• (Encryption): Enc receives a public key pk and a message m and produces a

ciphertext ct.

• (Decryption): Dec receives a secret key sk and a ciphertext ct and outputs a

message m.
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In the following sections the security parameter will be implicit when calling PGen. A

PKE scheme must satisfy the following correctness property.

Correctness. For any message m,

Pr[(pk,sk)← PGen(1λ);ct← Enc(pk,m);m′← Dec(sk,ct) : m = m′] = 1.

CPA security game. For any PPT adversary A , b ∈ {0,1} and PKE scheme PKE,

we consider the following CPA security game, denoted by Gcca
PKE,A(λ,b):

• (pk,sk)← PGen(1λ).

• A receives pk and oracle access to Oenc(·) := Enc(pk, ·).

• A outputs (m0,m1).

• ct← Enc(pk,mb).

• A receives ct and oracle access to Oenc(·)

• A outputs b′.

• Output b′ = b.

Definition 2.2 (CPA security). A public-key encryption scheme PKE is CPA-secure if

for all PPT adversaries A , there exists a negligible function negl such that∣∣∣Pr[Gcpa
PKE,A(λ,0) = 1]−Pr[Gcpa

PKE,A(λ,1)] = 1]
∣∣∣≤ negl(λ).

CCA security game. For any PPT adversary A , b ∈ {0,1} and PKE scheme PKE,

we consider the following CCA security game, denoted by Gcca
PKE,A(λ,b):

• (pk,sk)← PGen(1λ).

• A receives pk and oracle access to Odec(·) := Dec(sk, ·).

• A outputs (m0,m1).

• ct← Enc(pk,mb).

• A receives ct and oracle access to Odec(·) but is not allowed to query ct.

• A outputs b′.
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• Output b′ = b.

Definition 2.3 (CCA security). A public-key encryption scheme PKE is CCA-secure if

for all PPT adversaries A , there exists a negligible function negl such that∣∣∣Pr[Gcca
PKE,A(λ,0) = 1]−Pr[Gcca

PKE,A(λ,1)] = 1]
∣∣∣≤ negl(λ).

2.3.2 Digital Signatures

In the current section we define existential unforgeability against chosen message at-

tacks (EU-CMA).

Digital signatures syntax. A digital signature (DS) scheme is a triple of algorithms

Σ= (Gen,Sign,Vrfy) with the following syntax:

• (Key generation): Gen receives a string 1λ for security parameter λ, and outputs

a fresh public and secret keypair (spk,ssk)← Gen(1λ).

• (Signing): Sign receives a signing key ssk and a message m and produces a

signature σ← Sign(ssk,m).

• (Verification): Vrfy receives a public key spk, a message m and a signature σ,

and outputs a bit b← Vrfy(spk,m,σ).

In the following sections the security parameter will be implicit when calling Gen.

A DS scheme must satisfy the following correctness property.

Correctness. For any message m,

Pr[(spk,ssk)← Gen(1λ);σ← Sign(ssk,m) : Vrfy(spk,m,σ) = 1] = 1.

Unforgeability game. For any PPT adversary A and DS scheme Σ, we consider the

following security game, denoted by Geu-cma
Σ,A (λ):

• (spk,ssk)← Gen(1λ).

• A receives spk and oracle access to Osign(·) := Sign(ssk, ·). Let Q be the set of

queries made by A .

• A outputs (m,σ).
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• If Vrfy(spk,m,σ) = 1 and m /∈ Q, output 1, otherwise, output 0.

Definition 2.4 (Unforgeability). A DS scheme Σ is EU-CMA-secure, if for all PPT

adversaries A , there exists a negligible function negl such that

Pr
[
Geu-cma
Σ,A (λ) = 1

]
≤ negl(λ).

2.3.3 Non-Interactive Zero Knowledge (NIZK) proofs

Definition 2.5 (Robust NIZK [110]). Let W be a witness relation for a language

L ∈ NP. A non-interactive zero-knowledge argument system for W is a vector of

algorithms (G ,P ,V ,S = (S1,S2)), satisfying the following properties:

• Completeness. For any x ∈ L and any w such that (x,w) ∈W ,

Pr

[
V (crs,x,π) = 1

∣∣∣∣∣ (crs)← G(1λ)

π← P (x,w,crs)

]
≥ 1−negl(λ).

• Zero-knowledge. For all non-uniform PPT adversaries A , we have

Pr[AP (crs,·,·)(crs) = 1 | crs← G(1λ)]≈

Pr[AS( ˆcrs,τ,·,·)( ˆcrs) = 1 | ( ˆcrs,τ)← S1(1λ)],

where S( ˆcrs,τ,x,w) = S2( ˆcrs,τ,x) if (x,w) ∈W , otherwise outputs ⊥.

• Simulation sound extractability. There exists a PPT algorithm E , such that

for all PPT algorithms A , we have

Pr


V ( ˆcrs,x,π) = 1 ∧

w /∈W (x) ∧
(x,π) /∈ Q

∣∣∣∣∣∣∣∣
( ˆcrs,τ)← S1(1λ)

(x,π)← AS2( ˆcrs,τ,·)( ˆcrs)

w← E(τ,x,π)

≤ negl(λ),

where Q denotes the simulation queries and answers (xi,πi), produced by the interac-

tion between A and S2.

2.3.4 Repository Functionality

R EP [W,R] is based on the repository functionality of [203], parametrised by a writing

party W and a set of reading parties R
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Functionality R EP [W,R]

On message (WRITE,x) from party W:

generate nonce h
$←{0,1}λ

M[h]← x

return h

On message (READ,h) from party r ∈ R:

return M[h]

2.3.5 Common Reference String Functionality

The CR S [D] functionality, based on the presentation of [46], is parametrised by a

distribution D.

Functionality CR S [D]

On message GET from a party P:

if crs=⊥ then

let crs← D

return crs to P

This functionality has a simple interface: on a request from any protocol party (or the

adversary), a CRS string sampled from distribution D is returned. Once the CRS has

been sampled, an instance of CR S G [D] will always return the same string. While this

functionality is insufficient to realise global protocols in the GUC setting, where it is

subsumed by the augmented CRS functionality [87], our usage of the functionality in

the following sections is limited to local protocols. As a result, we are not concerned

with the type of deniability attacks that are addressed by the new functionality.

2.3.6 Secure Channel Functionality

SC S
R is the secure channel between source S and receiver R.

Functionality SC S
R

On message (SEND,m) from S:
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let M←M ∥ length(m)

return (SENT,m) to R

On message GETMSGS from A:

output M on the backdoor tape

This functionality provides some strong guarantees. The adversary is not activated

upon sending, but can later on request the length of all messages sent through the

channel.

Communication notation. By send (MSG,m) to SC S
R and receive (MSG,m′) , we

denote the secure transmission of a message (MSG,m) from S to R. After sending

the message S waits for the reply (MSG,m′) over SC R
S . When the identity of the re-

ceiver or the sender is obvious from the context, we might use shorthands SC S or SC R

respectively.

We write send (MSG,m) to A , p to denote a delayed (insecure) output to p. A
is first informed about (MSG,m) and can then determine when and if to deliver the

message to p.

2.3.7 The certification functionality FCERT

We assume the existence of an ideal certification functionality FCERT, inspired by

the certification functionality and the certification authority functionality introduced

in [77]. The difference between FCERT and the certification functionality in [77] is

that (i) instead of taking over signature verification, FCERT allows the verifier to verify

the validity of a signature offline, and (ii) it allows the generation of only one certificate

(signature) for each party.

In particular, the functionality FCERT is parameterized by a set of parties P and an

EUF-CMA signature scheme.

On a call to SIGN from a party in P , the functionality signs the provided verification

key if the party has not previously registered a key. On a call to GETK, it simply returns

the verification key to allow the caller to verify the message offline.

Functionality FCERT[P ,Σ]
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State variables Description

spk,ssk← Σ.Gen(1λ) Signature scheme parameters

S ← [] List of registered party keys and corresponding certificates

On message GETK from a party P:

return spk

On message (SIGN,vk) from P ∈ P :

if S [P] =⊥ then

cert← Σ.Sign(ssk,vk)

S [P]← (cert,vk)

return cert

2.3.8 Functional Encryption

Functional Encryption is a cryptographic primitive introduced by Boneh, Sahai, and

Waters [59] as a generalisation over several pre-existing types of primitives, such

as identity-based or attributed-based encryption, to compute some predicate over en-

crypted data. Since then, many variants have been proposed [199].

The standard notion of Functional Encryption consists of the following PPT algo-

rithms over the class of functions F : X → Y :

• KeyGen: given security parameter 1λ as input, KeyGen outputs master keypair

(mpk,msk)

• Setup: Setup takes msk,F ∈ F and returns functional key skF

• Enc: given string x ∈ X and mpk, Enc returns ciphertext ct or an error

• Dec : on evaluation over some ciphertext ct and functional key skF, Dec returns

y ∈ Y

Confidentiality A confidential Functional Encryption scheme allows only the func-

tion evaluation F(x) to be learned from the ciphertext ct and functional key skF.

Correctness A functional encryption scheme satisfies correctness if, for all func-

tions F ∈ F and all x ∈ X , the statement F(x)← Dec(Enc(mpk,x),skF) holds.
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Composable Functional Encryption Matt and Maurer [203] show that the notion

of functional encryption is equivalent, up to assumed resources, to that of an access

controlled repository, where some parties of type A are allowed to upload data, and

other parties of type B are allowed to retrieve some function on that data, if they have

received authorisation (granted by a party C). A party of type B does not learn anything

else about the stored data, besides the function they are authorised to compute (and

length leakage F0). Composable functional encryption is impossible in the standard

model, and their formulation require access to a random oracle. Badertscher et al. [35]

defines the security property of consistency Functional Encryption in the composable

setting, specifying different types of consistency based on which FE party is corrupted.

We now define the ideal functionality for functional encryption. Note that, our

definition is along the lines of [35, 203], however, as opposed to [35], in which A

and/or C might also get corrupted, we focus on the confidentiality of the encrypted

message against a malicious decryptor, B. Yet, our techniques provide security against

malicious encryptors, A,7 satisfying the notion of input consistency from [35].

Thus for any function f and input x, our functionality guarantees that B learns only

f (x) (and any information that can be inferred from it).

Our treatment allows the existence of several parties of type B, A. When the func-

tionality receives a message from such a party, their UC extended identity is used to

distinguish who the sender is, and store or retrieve the appropriate data. For simplicity,

in our ideal functionality we refer to all such parties as B, A, and the set of all such

parties as B,A, respectively.

Functionality FE[F,A,B,C]

The functionality is parameterised by the function class F : X → Y , the set of extended

identity for parties of type A and B, and the identity of authority party C.

State variables Description

F0 The distinguished leakage function

M← [] Stores the plaintext and plaintext space for each message han-

dler

R← [] list of authorised functions for all t decryption parties

On message SETUP from C:

7Note that B⊆ A.
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setup←⊤
R[i]←{F0},∀i ∈ B

send SETUP to A

On message (ENCRYPT,x) from P ∈ A∪B:

if setup=⊤∧ x ∈ X then

generate nonce h
$←{0,1}λ

M[h]← x

send (ENCRYPTED,h) to A ,P

On message (KEYGEN,F,B) from C:

if F ∈ F then

R[B]← R[B]∪{F}
send (ASSIGNED,F,B) to A ,C

On message (DECRYPT,h,F) from B ∈ B:

let x←M[h]

if A and C are honest then

if x ∈ X ∧F ∈ R[B] then

return (DECRYPTED,F(x))

else

send (DECRYPT,h,F,x) to A and receive (DECRYPTED,y)

return (DECRYPTED,y)

Functional Encryption and TEEs In cryptography, hardware is frequently used to

improve performance or circumvent impossibility results, e.g. [217, 10, 102]. As rel-

evant examples, Desmedt and Quisquater [116] implements Identity-based encryption

using tamperproof hardware, and Chung, Katz, and Zhou [100] show how to use state-

less hardware tokens to implement functional encryption.

The IRON protocol by Fisch et al. [127] realises functional encryption by using

an SGX-like TEE. Their protocol equips C with a key management enclave, and any

number of B decryptors with a decryption and functional enclave. C generates a Public

Key encryption keypair, and distributes the public key to A, who can use it to encrypt

their data. To receive a functional key, B proves to C that it is running the correct

enclaves through attestation, and its decryption enclave establishes a secure channel

with the key management enclave to receive the secret key. We describe the protocol

in more detail in Chapter 3. A further extension implementing verifiable functional

encryption is presented in Suzuki et al. [268].
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[44] proposes a new protocol to compute function-hiding FE. Their construction

relies on the existance of a Multi-Input Functional Encryption scheme, whose decryp-

tion operation is executed obvliviously inside a TEE that has received an obfuscated

functional key.
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This chapter introduces the new primitive of Functional Encryption for Stateful and

Randomized functionalities (FESR), and constructs a new protocol to realise it. Our

protocol, Steel is an extension of the Iron protocol of Fisch et al. [127], adapted to our

new setting of stateful and randomised functionalities. We prove the security of Steel

by showing it UC-realises the FESR ideal functionality, using the ideal functionality

of Pass, Shi, and Tramèr [230] (PST) to capture the protocol’s usage of TEEs. Our

proof shows that it is possible to realise (in general) composable functional encryption

as defined by Matt and Maurer [203] (see Section 2.3.8), while relying on TEEs in-

stead of Random Oracles, and for the larger function class of FESR when additionally

relying on a common reference string.

3.1 Technical Overview

Attested execution via the PST model. The Steel protocol assume access to the

global attestation functionality, Gatt, described in Section 2.2.4.1.

Gatt is a UC functionality parameterised by a signature scheme, and a registry of

all parties that are equipped with an attested execution processor. At a high level,

Gatt allows parties to register programs and ask for evaluations over arbitrary inputs,

while also receiving signatures that ensure correctness of the computation. Since the

manufacturer’s signing key pair can be used in multiple protocols simultaneously, Gatt

is defined as a global functionality that uses the same key pair across sessions. In this

chapter, we update the original GUC formulation of [230] to use the UCGS model (see

Section 2.1.2.2)

Setting, adversarial model & security. Our treatment considers three types of par-

ties that corresponds to the Functional Encryption roles described in Section 2.3.8:

encryptors, denoted by A; decryptors, denoted by B; as well as a single party that cor-

responds to the trusted authority, denoted by C. The adversary is allowed to corrupt

parties in B and request for evaluations of functions of its choice over messages en-

crypted by parties in A. We then require correctness of the computation, meaning that

the state for each function has not been tampered with by the adversary, as well as

confidentiality of the encrypted message, which ensures that the adversary learns only

the output of the computation (and any information implied by it) and nothing more.

Our treatment covers both stateful and randomized functionalities.
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Steel: UCGS-secure FE for stateful and randomized functionalities. Steel is exe-

cuted by the sets of parties discussed above, where besides encryptors, all other parties

receive access to Gatt, abstracting an execution in the presence of secure hardware en-

claves. Our protocol is based on Iron [127], so we briefly revisit its main protocol op-

erations: (1) Setup, executed by the trusted party C, installs a key management enclave

(KME), running a program to generate public-key encryption and digital signature, key

pairs. The public keys are published, while the equivalent secrets are kept encrypted

in storage (using SGX’s terminology, the memory is sealed). Each of the decryptors

installs a decryption enclave (DE), and attests its authenticity to the KME to receive

the secret key for the encryption scheme over a secure channel. (2) KeyGen, on input

function F, calls KME, where the latter produces a signature on the measurement of an

instantiated enclave that computes F, our functional key (an approach introduced by

[92]). (3) When Encrypt is called by an encryptor, it uses the public encryption key

to encrypt a message and sends the ciphertext to the intended recipients. (4) Decrypt
is executed by a decrypting party seeking to compute some function F on a ciphertext.

This operation instantiates a matching function enclave (or resume an existing one),

whose role is that of computing the functional decryption, if an authorised functional

key is provided.

Steel consists of the above operations, with the appropriate modifications to enable

stateful functionalities. In addition, Steel provides some simplifications over the Iron

protocol. In particular, we repurpose attestation’s signature capabilities to supplant the

need for a separate signature scheme to generate functional keys, and thus minimise the

trusted computing base. In practice, a functional key for a function F can be produced

by just letting the key generation process return F; as part of Gatt’s execution, this

produces an attestation signature σ over F, which becomes the functional key skF for

that function, provided the generating enclave id is also made public (a requirement

for verification, due to the signature syntax of attestation in Gatt).

The statefulness of functional encryption is simply enabled by adding state storage

to each functional enclave. Similar to [230], a curious artefact in the protocol’s model-

ing is the addition of a “backdoor” that programs the output of the function evaluation

subroutine, such that, if a specific argument is set on the input, the function evaluation

returns the value of that argument. The reason for this addition is to enable simula-

tion of signatures over function evaluations that have already been computed using the

ideal functionality. We note that this addition does not impact correctness, as the state

array is not modified if the backdoor is used, nor confidentiality, since the output of
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this subroutine is never passed to any other party besides the caller B. Finally, a further

addition is that our protocol requires the addition of a proof of plaintext knowledge

on top of the underlying encryption scheme. An efficient implementation for such a

modification can be realised by drawing on the techniques of signed ElGamal [254],

where the random coin used during encryption is sufficient to prove knowledge of the

plaintext. However, this construction would require the use of the random oracle and

generic group model, or at best the algebraic group model [132], making composition

more difficult, and is thus not considered in full beyond this remark. The Steel protocol

definition is presented in Section 3.3.

Security of Steel. Our protocol uses an existentially unforgeable under chosen mes-

sage attacks (EU-CMA) signature scheme, Σ, a CCA-secure public-key encryption

scheme, PKE, and a non-interactive zero knowledge scheme, N (as defined in Sec-

tions 2.3.2,2.3.2, and 2.3.3, respectively). Informally, Σ provides the guarantees re-

quired for realising attested computation (as discussed above), PKE is used to protect

the communication between enclaves, and for protecting the encryptors’ inputs. For

the latter usage, it is possible to reduce the security requirement to CPA-security as we

additionally compute a simulation-extractable NIZK proof of well-formedness of the

ciphertext that guarantees non-malleability.

Our proof is via a sequence of hybrids in which we prove that the real world proto-

col execution w.r.t. Steel is indistinguishable from the ideal execution, in the presence

of an ideal functionality that captures FE for stateful and randomized functionalities.

The goal is to prove that the decryptor learns nothing more than an authorized function

of the private input plaintext, thus our hybrids gradually fake all relevant information

accessed by the adversary. In the first hybrid,1 all signature verifications w.r.t. the

attestation key are replaced by an idealized verification process, that only accepts mes-

sage/signature pairs that have been computed honestly (i.e., we omit verification via

Σ). Indistinguishability is proven via reduction to the EU-CMA security of Σ. Next

we fake all ciphertexts exchanged between enclaves that carry the decryption key for

the target ciphertext, over which the function is evaluated (those hybrids require re-

ductions to the CCA security of PKE).2 The next hybrid substitutes ZK proofs over

the target plaintexts with simulated ones, and indistinguishability with the previous

one reduces to the zero knowledge property of N. Then, for maliciously generated

1Here we omit some standard UC-related hybrids.
2Here CCA security is a requirement as the adversary is allowed to tamper with honestly generated

ciphertexts.
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ciphertexts under PKE – which might result via tampering with honestly generated en-

cryptors’ ciphertexts – instead of using the decryption operation of PKE, our simulator

recovers the corresponding plaintext using the extractability property of N. Finally,

we fake all ciphertexts of PKE, that encrypt the inputs to the functions (this reduces

to CPA security). Note that, in [127], the adversary outputs the target message, which

is then being encrypted and used as a parameter to the ideal world functionality that

is accessed by the simulator in a black box way. In this work, we consider a stronger

setting in which the adversary directly outputs ciphertexts of its choice. While in the

classic setting for Functional Encryption (where Iron lives) simulation security is easily

achieved by asking the adversarial enclave to produce an evaluation for the challenge

ciphertext, in FESR the simulator is required to conduct all decryptions through the

ideal functionality, so that the decryptor’s state for that function can be updated. We

address the above challenge by using the extractability property of NIZKs: for mali-

ciously generated ciphertexts our simulator extracts the original plaintext and asks the

ideal FESR functionality for its evaluation. Simulation-extractable NIZK can be effi-

ciently instantiated, e.g., using zk-SNARKs [38]. Security of our protocol is formally

proven in Section 3.4. The simulator therein provided could be easily adapted to show

that the Iron protocol UCGS-realises Functional Encryption, by replacing the NIZK

operations for maliciously generated ciphertexts with a decryption from the enclave,

as described above.

3.2 Functional encryption for stateful and randomized

functionalities

In this section we define the ideal functionality of functional encryption for stateful

and randomized functionalities (FESR), a generalisation over Functional Encryption.

The syntax for this new primitive matches that of Functional Encryption schemes

(outlined in Section 2.3.8). The two primitives differ by the parameterisation of the

class of computable functions F; in the case of FESR, this is defined as

F : X ×S ×R → Y ×S

where S = {0,1}s(λ),R = {0,1}r(λ) for polynomials s(·) and r(·).
The definition of the primitive follows from the ideal functionality, given below.

Our treatment considers the existence of several parties of type A (encryptors),
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B (decryptors), and a singular trusted authority C. The latter is allowed to run the

KeyGen,Setup algorithms; parties of type A run Enc, and those of type B run Dec.

The set of all decryptors (resp. encryptors) is denoted by B (resp. A). When the func-

tionality receives a message from such a party, their UC extended identity is used to

distinguish who the sender is and store or retrieve the appropriate data. For simplicity,

in our ideal functionality we refer to all parties by their type, with the implied assump-

tion that it might refer to multiple distinct UC parties. For the sake of conciseness, we

also omit including the sid parameter as an argument to every message.

The functionality reproduces the four algorithms that comprise functional encryp-

tion. During KeyGen, a record P is initialised for all t instances of B, to record the

authorised functions for each instance, and its state. The Setup call marks a certain B

as authorised to decrypt function F, and initialises its state to /0. The Enc call allows a

party A, B, to provide some input x, and receive a unique identifying handle h. This

handle can then be provided, along with some F, to a decryption party to obtain an

evaluation of F on the message stored therein. Performing the computation will also

result in updating the state stored in P .

Functionality FESR[F,A,B,C]

The functionality is parameterized by the randomized function class F such that for each

F ∈ F : X × S ×R → Y × S , over state space S and randomness space R , and by three

distinct types of party identities A ∈ A,B ∈ B,C interacting with the functionality via

dummy parties (that identify a particular role). For each decryptor/function pair, a state

value is recorded.

State variables Description

F0 Leakage function returning the length of the message

setup[·]← false Table recording which parties were initialized.

M [·]←⊥ Table storing the plaintext for each message handler

P [·]←⊥ Table of authorized functions and their states for all decryption

parties

On message (SETUP,P) from party C, for P ∈ A∪B:

setup[P]← true

send (SETUP,P) to A

On message (SETUP,P) from A , for P ∈ {A,B}:

setup[P]← true
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P [P,F0]← /0

send SETUP to P

On message (ENCRYPT,x) from party P ∈ {A,B}:

if setup[P] = true∧x ∈ X then

generate nonce h
$←{0,1}λ

M [h]← x

send (ENCRYPTED,h) to P

On message (KEYGEN,F,B) from party C:

if F ∈ F∧ setup[B] = true then

send (KEYGEN,F,B) to A and receive ACK

P [B,F]← /0

send (ASSIGNED,F) to B

On message (DECRYPT,h,F) from party B:

x←M [h]

if C is honest then

if P [B,F] ̸=⊥∧x ∈ X then

r← R
s← P [B,F]

(y,s′)← F(x,s, r)

P [B,F]← s′

return (DECRYPTED,y)

else

send (DECRYPT,h,F,x) to A and receive (DECRYPTED,y)

return (DECRYPTED,y)

The functionality is defined for possible corruptions of parties in B, A. If C is

corrupted, we can no longer guarantee the evaluation to be correct, since C might

authorize the adversary to compute any function in F. In this scenario, we allow the

adversary to learn the original message value x and to provide an arbitrary evaluation y.

In this work we primarily focus on the security guarantees provided by FE, which

is confidentiality of the encrypted message against malicious decryptors, B. Yet, it

provides security against malicious encryptors, A, thus it satisfies input consistency,

originally introduced by [35] (in which A and/or C might also get corrupted ).

Our definition is along the lines of [35, 203]; in order to allow stateful and ran-

domized functions, we extend the function class with support for private state and

randomness as above. Whenever B accesses a function on the data from the repository,



72 Chapter 3. Steel

the repository draws fresh randomness, evaluates the function on the old state (for the

current B and function), updates the state according to the function evaluation, and

returns the result.

The property of confidentiality for functional encryption also holds for FESR, as

the decrypting party is only allowed to learn the function evaluation (and not the state,

before or after decryption). Correctness for FESR is slightly stronger than in Sec-

tion 2.3.8: it is necessary for the state at any decryption to be uniquely determined

by the sequence of previous decryption for the same F,B pair (without allowing B to

influence its value, besides the choice of which ciphertexts to decrypt). Intuitively, the

ideal world accessed controlled repository presented models both confidentiality and

correctness. by inspection of the four lines r← R , s← P [B,F], (y,s′)← F(x,s, r), and

P [B,F]← s′.

In addition, our definition is the first one that captures stateful and randomized

functionalities, where the latter refers to the standard notion of randomized functional-

ities in which each invocation of the function uses independent randomness. Therefore,

our protocol achieves a stronger notion of randomized FE than [8, 146, 169], which

require a new functional key for each invocation of the function, i.e., decryptions with

the same functional key always return the same output. Our construction of func-

tional keys through signatures over a description of the function body is facilitated by

the hardware setup, as in [128]; this technique had previously been developed for FE

schemes based on extractability [61] and indistinguishability [92] obfuscation.

3.3 A UC-formulation of Steel

In this section we present Steel in the UCGS setting. As we already state above, our

treatment involves three roles: the key generation party C, the decryption parties B,

and the encryption parties A. Among them, only the encryptor does not need to have

access to an enclave. Confidentiality and correctness of the protocol in the face of an

adversarial B hold from the proof of indistinguishability between real and ideal world

in 3.4. We do not give any guarantees of security for corrupted A,C; although we

remark informally that, as long as its enclave is secure, a corrupted C has little chances

of learning the secret key. Besides the evaluation of any function in F it authorises

itself to decrypt, it can also fake or extract from proofs of ciphertext validity π by

authorizing a fake reference string crs. Before formally presenting our protocol we

highlight important assumptions and conventions:
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• For simplicity of presentation, we assume a single instance each for A, B (and

therefore we use the ideal repository R EP [A,B], or R EP for conciseness)

• all communication between parties (α,β) occurs over secure channels SC β

α,SC α

β
.

Our usage of this strong channel functionality is in line with the model of [203]

(and [35])3.

• Functional keys are (attestation) signatures by an enclave progKME on input

(keygen,F) for some function F; it is easy, given a list of keys, to retrieve the

one which authorises decryptions of F

• keyword fetch retrieves a stored variable from memory and aborts if the value

is not found

• on keyword assert the program checks that an expression is true, and proceeds

to the next line, aborting otherwise

• all variables within an enclave are erased after use, unless saved to encrypted

memory through the store keyword

• We use the notation “output← Gatt.command(input)” as a shorthand for “send
(command, input) to Gatt and receive output ”

Protocol Steel is parameterised by a function family F : X ×S ×R → Y ×S , UC

parties A,B,C, a CCA secure public key encryption scheme PKE, a EU-CMA secure

signature scheme Σ, a Robust non-interactive zero-knowledge scheme N, and security

parameter λ.

Protocol Steel[F,A,B,C,PKE,Σ,N,λ]

State variables Description

mpk←⊥ Local copy of master public key for participants

prog{KME,DE,FE}← . . . Source code of enclaves as defined below

K [·]← /0 Table of function keys at B

Key Generation Authority C:

On message (SETUP,P):

3Like these works, we focus on the security guarantees against a corrupted party B, and this secure
channel formulation simplifies the simulation of network interactions. We do, however, not see any
fundamental obstacles to adopting a more realistic secure channel functionality such as that of [75]
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if mpk=⊥ then

eidKME← Gatt.install(C.sid,progKME)

send GET to CR S and receive (CRS,crs)

(mpk, ·)← Gatt.resume(eidKME,(init,crs,C.sid))

if P = A then

send (SETUP,mpk) to SCA

else if P = B then

send (SETUP,mpk,eidKME) to SCB and receive (PROVISION,σ,eidDE,pkKD)

(ctkey,σsk)← Gatt.resume(eidKME,(provision,(σ,eidDE,pkKD,eidKME))))

send (PROVISION,ctkey,σsk) to SCB

On message (KEYGEN,F,B):

assert F ∈ F∧mpk ̸=⊥
((keygen,F),σ)← Gatt.resume(eidKME,(keygen,F))

skF← σ; send (KEYGEN,(F,skF)) to SCB

Encryption Party A:

On message (SETUP,mpk) from SCC:

send GET to C R S and receive (CRS,crs)

store mpk,crs; return SETUP

On message (ENCRYPT,m):

assert mpk ̸=⊥∧m ∈ X
ct

r←− PKE.Enc(mpk,m)

π← P ((mpk,ct),(m, r),crs),ctmsg← (ct,π)

send (WRITE,ctmsg) to R EP and receive h

return (ENCRYPTED,h)

Decryption Party B:

On message (SETUP,mpk,eidKME) from SCC:

store mpk;eidDE← Gatt.install(B.sid,progDE)

send GET to C R S and receive (CRS,crs)

((pkKD, ·, ·),σ)← Gatt.resume(eidDE,(init-setup,eidKME,crs,B.sid))

send (PROVISION,σ,eidDE,pkKD) to SCC and receive (PROVISION,ctkey,σKME)

Gatt.resume(eidDE,(complete-setup,ctkey,σKME))

return SETUP

On message (KEYGEN,(F,skF)) from SCC:

eidF← Gatt.install(B.sid,progFE[F])

(pkDF,σF)← Gatt.resume(eidF,(init,mpk,B.sid))
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K [F]← (σF,eidF,pkDF,skF)

return (ASSIGNED,F)

On message (DECRYPT,F,h):

assert K [F] ̸=⊥
send (READ,h) to R EP and receive ctmsg

(σF,eidF,pkDF,skF)←K [F]

((ctkey,crs),σDE)← Gatt.resume(eidDE,(provision,σF,eidF,pkDF,skF,F))

((computed,y), ·)← Gatt.resume(eidF,(run,σDE,eidDE,ctkey,ctmsg,crs,⊥))
return (DECRYPTED,y)

progKME:

on input (init,crs, idx):

assert pk=⊥;(pk,sk)← PKE.PGen(1λ)

store sk,crs, idx; return pk

on input (provision,(σDE,eidDE,pkKD,eidKME)):

vkatt← Gatt.vk; fetch crs, idx,sk

assert Σ.Vrfy(vkatt,(idx,eidDE,progDE,(pkKD,eidKME,crs),σDE)

ctkey← PKE.Enc(pkKD,sk)

return ctkey

on input (keygen,F):

return (keygen,F)
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progDE:

on input (init-setup,eidKME,crs, idx):

assert pkKD ̸=⊥
(pkKD,skKD)← PKE.PGen(1λ)

store skKD,eidKME,crs, idx

return pkKD,eidKME,crs

on input (complete-setup,ctkey,σKME):

vkatt← Gatt.vk

fetch eidKME,skKD, idx

m← (idx,eidKME,progKME,ctkey)

assert Σ.Vrfy(vkatt,m,σKME)

sk← PKE.Dec(skKD,ctkey)

store sk,vkatt

on input (provision,σ,eid,pkDF,skF,F):

fetch eidKME,vkatt,sk, idx,crs

m1← (idx,eidKME,progKME,(keygen,F))

m2← (idx,eid,progFE[F],pkDF)

assert Σ.Vrfy(vkatt,m1,skF) and

Σ.Vrfy(vkatt,m2,σ)

return PKE.Enc(pkDF,sk),crs

progFE[F]:

on input (init,mpk, idx):

assert pkDF =⊥
(pkDF,skDF) = PKE.PGen(1λ)

mem← /0;store skDF,mem,mpk, idx

return pkDF

on input (run,σDE,eidDE,ctkey,ctmsg,crs,y′):

if y′ ̸=⊥
return (computed,y′)

vkatt← Gatt.vk;(ct,π)← ctmsg

fetch skDF,mem,mpk, idx

m← (idx,eidDE,progDE,ctkey,crs)

assert Σ.Vrfy(vkatt,m,σDE)

sk= PKE.Dec(skDF,ctkey)

assert N.V ((mpk,ct),π,crs)

x = PKE.Dec(sk,ct)

out,mem′ = F(x,mem)

store mem←mem′

return (computed,out)

As we mention in the Introduction, our modeling considers a “backdoor” in the

progFE.run subroutine, such that, if the last argument is set, the subroutine just returns

the value of that argument, along with a label declaring the function was evaluated.

The addition of the label “computed” is necessary, otherwise the backdoor would allow

producing an attested value for the public key generated in subroutine progFE.init.

As a further addition we strengthen the encryption scheme with a plaintext proof of

knowledge (PPoK). For public key pk, ciphertext ct, plaintext m, ciphertext random-

ness r, the relation R= {(pk,ct),(m, r)|ct=PKE.Enc(mpk,m;r)} defines the language

LR of correctly computed ciphertexts. As a CPA secure PKE scheme becomes CCA

secure when extended with a simulation-extractable PPoK[187], this is a natural equiv-

alence to the CCA security requirement of Iron. Additionally, it enables the simulator

to extract valid plaintexts from all adversarial ciphertexts. In our security proof the

simulator will submit these plaintexts to FESR on behalf of the corrupt B to keep the

decryption states of the real and ideal world synchronized.
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3.4 UC-security of Steel

We now prove the security of Steel in the UCGS framework. To make the PST model

compatible with the UCGS model, we first define the identity bound ξ.

The identity bound ξ on the environment. Our restrictions are similar to those in

PST [229, Section 3.2], namely we assume that the environment can access Gatt in the

following ways: (1) Acting as a corrupted party, and (2) acting as an honest party but

only for non-challenge protocol instances.

We now prove our main theorem.

Theorem 3.1. Steel UC-realises the FESR functionality in the presence of the global

functionality Gatt and local functionalities CR S ,R EP ,SC , with respect to the iden-

tity bound ξ defined above.

We present a simulator algorithm SFESR such that Theorem 2.1 holds for protocols

Steel and IDEALFESR (the protocol encapsulating the ideal functionality and a set of

dummy parties corresponding to the real-world parties in Steel). Following [203], our

proof considers static corruption of a single party B, we did, however, not encounter

any road-blocks to adaptive corruption of multiple decryptors besides increased proof

notational complexity. The environment is unable to distinguish between an execution

of the Steel protocol in the real world, and the protocol consisting of SFESR, dummy

parties A,B,C and ideal functionality FESR. Both protocols have access to the shared

global subroutines of Gatt. While hybrid functionalities R EP , SC , CR S (defined

in Section 2.3.4,2.3.6, and 2.3.5 respectively) are only available in the real world and

need to be reproduced by the simulator, we use SC to denote simulated channels.

Given protocols Steel, FESR, and Gatt, Steel ξ-UC emulates FESR in the presence

of Gatt if M[Steel,Gatt] ξ-UC emulates M[FESR,Gatt] (see Definition 2.1). We focus

or exposition on the messages exchanged between the environment and the machine

instances executing Steel, FESR, and Gatt, since the machine M is simply routing

messages from any external party to the right ITI

The simulator operates in the ideal world, where we have the environment Z send-

ing message to dummy protocol parties which forward their inputs to the ideal func-

tionality FESR. SFESR is activated either by an incoming message from a corrupted

party or the adversary, or when FESR sends a message to the ideal world adversary.

As A is a dummy adversary which normally forwards all queries between the corrupt

party and the environment, SFESR gets to see all messages Z sends to A . The simulator
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is allowed to send messages to the FESR and Gatt functionalities impersonating corrupt

parties. In the current setting, the only party that can be corrupted such that FESR still

gives non trivial guarantees is party B. The notation output← Gatt.command(input)

here is a shorthand for “simulate sending (command, input) to Gatt through B and

receive output”. Thus, whenever the real world adversary or the ideal world simulator

call Gatt.install and Gatt.resume for the challenge protocol instance, they must do so

using the identity of B.

Simulator SFESR[PKE,Σ,N,λ,F]

State variables Description

H [·]← /0 Table of ciphertext and handles in public repository

K ← [] List of progFE[F] enclaves and their eidF
G ←{} Collects all messages sent to Gatt and its response

B ←{} Collects all messages signed by Gatt

( ˆcrs,τ)← N.S1 Simulated reference string and trapdoor

For Key Generation Authority C:

On message (SETUP,P) from FESR:

if mpk=⊥ then

eidKME← Gatt.install(C.sid,progKME)

(mpk, ·)← Gatt.resume(eidKME, init, ˆcrs,C.sid)

if P = A then

send (SETUP,mpk) to SCA

else if P = B then

send (SETUP,mpk,eidKME) to SCC
B and receive (PROVISION,σ,eidDE,pkKD)

assert (C.sid,eidDE,progDE,pkKD) ∈ B[σ]

(ctkey,σsk)← Gatt.resume(eidKME,(provision,(σ,eidDE,pkKD,eidKME, ˆcrs))))

send (PROVISION,ctkey,σsk) to SCB

On message (KEYGEN,F,B) from FESR:

assert F ∈ F∧mpk ̸=⊥
((keygen,F),σ)← Gatt.resume(eidKME,(keygen,F))

skF← σ; B[skF]← (C.sid,eidKME,progKME,(keygen,F))

send (KEYGEN,(F,skF)) to SCB

For Decryption Party B:

On message GET from party B to C R S :
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send (CRS, ˆcrs) to B

On message (READ,h) from party B to R EP :

send (DECRYPT,F0,h) to FESR on behalf of B and receive |m|
assert |m| ̸=⊥
ct← PKE.Enc(mpk,0|m|)

π← N.S2( ˆcrs,τ,(mpk,ct))

ctmsg← (ct,π); H [ctmsg]← h

send (READ,ctmsg) to B

On message (INSTALL, idx,prog) from party B to Gatt:

eid← Gatt.install(idx,prog)

G [eid].install← (idx,prog)

// G [eid].install[1] is the program’s code

forward eid to B

On message (RESUME,eid, input) from party B to Gatt:

// The Gatt registry does not allow B to access eidKME in real world

assert G [eid] ̸=⊥∧ eid ̸= eidKME

if G [eid].install[1] ̸= progFE[·]∨ (input[0] = run∧ input[−1] ̸=⊥) then

(output,σ)← Gatt.resume(eid, input)

G [eid].resume← G [eid].resume ∥ (σ, input,output)
B[σ]← (G [eid].install[0],eid,G [eid].install[1],output)

if G [eid].install[1] = progDE∧ input[0] = provision then

(provision,σDE,eid,pkDF,skF,F)← input

fetch (·,(init-setup,eidKME, ˆcrs), ·) ∈ G [eid].resume

assert (idx,eidKME,progKME,(keygen,F)) ∈ B[skF]

assert (idx,eidDE,progDE,ctkey, ˆcrs) ∈ B[σDE]

forward (output,σ) to B

else

idx,progFE[F]← G [eid].install

(run,σDE,eidDE,ctkey,ctmsg, ˆcrs,⊥)← input

assert (σF,(init,mpk, idx),(pkDF)) ∈ G [eid].resume

assert (idx,eid,progFE[F],pkDF) ∈ B[σF]

assert (idx,eidDE,progDE,ctkey, ˆcrs)) ∈ B[σDE]

// If the ciphertext was not computed honestly and saved to H
if H [ctmsg] =⊥ then

(ct,π)← ctmsg

(m, r)← N.E(τ,(mpk,ct),π)
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if m =⊥ then send (DECRYPT,F,⊥) to B and abort

send (ENCRYPT,m) to FESR on behalf of B and receive h

H [ctmsg]← h

h←H [ctmsg]

send (DECRYPT,F,h) to FESR on behalf of B and receive y

((computed,y),σ)← Gatt.resume(eidF,(run,⊥,⊥,⊥,⊥,⊥,y))
G [eid].resume← G [eid].resume ∥ (σ, input,(computed,y)))

B[σ]← (G [eid].install[0],eid,G [eid].install[1],(computed,y))

forward ((computed,y),σ) to B

3.4.1 Designing the simulation

The ideal functionality FESR and protocol Steel share the same interface consisting of

messages SETUP, KEYGEN, ENCRYPT, DECRYPT. During Steel’s SETUP, the protocol

generates public parameters when first run, and provisions the encrypted secret key to

the enclaves of B. As neither of these operations are executed by the ideal functionality,

we need to simulate them, generating and distributing keys outside of party C.

As in Steel, we distribute the public encryption key on behalf of C to any newly

registered B and A over secure channels. Once B has received this message, it will

try to obtain the (encrypted) decryption key for the global PKE scheme from party

C and its provision subroutine of progKME. Since C is a dummy party in the ideal

world, it would not respond to this request, so we let SFESR respond. In Steel key

parameters are generated within the key management enclave, and communication of

the encrypted secret key to the decryption enclave produces an attestation signature.

Thus, the simulator, which can access Gatt impersonating B, is required to install an

enclave. Because of the property of anonymous attestation, the environment cannot

distinguish whether the new enclave was installed on B or C. If the environment tries

to resume the program running under eidKME in the test session through B, this is

intercepted and dropped by the simulator.

Before sending the encrypted secret key, the simulator verifies that B’s public key

was correctly produced by an attested decryption enclave, and was initialised with the

correct parameters. If an honest enclave has been instantiated and we can verify that

it uses pkKD,eidKME,crs, we can safely send the encrypted sk to the corrupted party as

no one can retrieve the decryption key from outside the enclave.

On message (KEYGEN,F,B) from the functionality after a call to KEYGEN, SFESR

simply produces a functional key by running the appropriate progKME procedure through



3.4. UC-security of Steel 81

Gatt. Similarly, on receiving (READ,h) for R EP , SFESR produces an encryption of a

canonical message (a string of zeros) and simulates the response.

When the request to compute the functional decryption of the corresponding ci-

phertext is sent to progFE[F], we verify that the party B has adhered to the Steel protocol

execution, aborting if any of the required enclave installation or execution steps have

been omitted, or if any of the requests were made with dishonest parameters generated

outside the enclave execution (we can verify this through the attestation of enclave

execution). If the ciphertext was not obtained through a request to R EP , we use the

NIZK extractor to learn the plaintext m and submit a message (ENCRYPT,m) to FESR

on behalf of the corrupt B. This guarantees that the state of FESR is in sync with the

state of progFE[F] in the real world.

If all such checks succeed, and the provided functional key is valid, SFESR fetches

the decryption from the ideal functionality. While the Steel protocol ignores the value

of the attested execution of run, we can expect the adversary to check its result for

authenticity. Therefore, it is necessary to pass the result of our decryption y through

the backdoor we constructed in progFE[F]. This will produce an authentic attestation

signature on y, which will pass any verification check convincingly (as discussed in the

previous section, the backdoor does not otherwise impact the security of the protocol).

3.4.2 Proof of Security

We proceed to show that the real world execution with respect to the Steel protocol

and dummy adversary is indistinguishable from the ideal execution w.r.t. the ideal

functionality FESR and the simulator described above. Let Hybrid 0 be the real world

execution w.r.t. to the Steel protocol and dummy adversary.

Hybrid 1 We define Hybrid 1 to be identical to 0, but as translated to the ideal world;

that is, we replace protocol Steel with a protocol consisting of dummy parties A,B,C

and ideal functionality FESR; the dummy adversary machine is replaced by a simulator

S ′FESR, who emulates Steel’s execution by emulating all operations that would normally

be run by the honest parties. Messages are now sent to the ideal functionality, but the

responses are ignored and the original protocol is perfectly executed by S ′FESR. Hybrid

0 and 1 are indistinguishable because their behaviour is equivalent due to simulator

S ′FESR. Since the ideal functionality is not visible to the environment, it is harmless for

the dummy parties to send messages to it.
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Lemma 3.1. H0 is identical to H1.

Hybrid 2 diverges from Hybrid 1 in that all signature verifications obtained with the

attestation public key vkatt are replaced by the process of storing all outgoing messages

from the Gatt functionality in a map data structure, and checking on verification that

the message and corresponding signature were correctly recorded. The behaviour of

the two hybrids is equivalent, as long as the adversary in Hybrid 2 is not able to provide

a signature such that the verification checks are successful, even if the messages were

not recorded as coming through the Gatt functionality. Assuming the unforgeability

property of Gatt’s signature scheme is satisfied, Hybrid 1 is then indistinguishable to

Hybrid 2.

Lemma 3.2. If Σ is EU-CMA secure then H1 ≈ H2, over the randomness used by all

parties in H1, H2.

Proof. To prove the indistinguishability of the two hybrids, we show how an envi-

ronment Z that breaks attestation can be used to build an adversary R that breaks

unforgeability of the signature scheme.

For attestation to break, the adversary needs to produce signature σ such that

Σ.Vrfy(vkatt,σ,(sid,eidX,progX,out)) = 1 for some program progX and output out

such that no execution of progX under sid produced out with attestation σ

We now describe adversary R, whose goal is to break signature game (defined in

Section 2.3.2) CΣ by submitting a forged signature.

Reduction RCΣ,Z

State variables Description

spk Public key for game CΣ

H ←{} Repository of message requests

G ←{} Collects all enclave programs registered by Z
state←{} Dictionary to hold the state for each function

On message (SETUP,P):

if mpk=⊥ then

(mpk,msk)← PKE.PGen(1λ)

send GET to C R S and receive (CRS,crs)

if P = A then
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send (SETUP,mpk) to SCA

else if P = B then

send (SETUP,mpk,eidKME) to SCB and receive (PROVISION,σ,eidDE,pkKD)

m← (sid,eidDE,progDE,pk)

if Σ.Vrfy(spk,m,σ)∧σ ̸∈ CΣ.Q then

output (m,σ) to CΣ

c← PKE.Enc(pk,msk)

σKME← CΣ.Osign(sid,eid,progKME,c)

send (PROVISION,c,σKME)) to SCB

On message (KEYGEN,F,B):

if F ̸∈ F∨mpk=⊥ then return ⊥

σ← CΣ.Osign(keygen,F)

state← 0⃗

send (KEYGEN,(F,σ)) to SCB

On message (ENCRYPT,m):

if mpk=⊥∨m ̸∈ X then return ⊥

generate nonce h
$←{0,1}λ;H [h]←m

return (ENCRYPTED,h)

On message (READ,h) from party B to R EP :

m←H [h]

r←{0,1}λ;ct← PKE.Enc(mpk,m;r)

π← P ((mpk,ct),(m, r),crs)

return (ct,π)

On message GETPK from B to Gatt:

return spk

On message (INSTALL, idx,prog) from B to Gatt:

eid←{0,1}λ

G [eid]← (idx,prog)

send eid to B

On message (RESUME,eid, input) from B to Gatt:

if input[0] = init-setup then

if G [eid][1] ̸= progDE then abort

(init-setup,eidKME,crs)← input

(pk,sk)← PKE.PGen(1λ)
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output← (pk,eidKME,crs)

σ← CΣ.Osign(sid,eid,progDE,output)

forward (output,σ) to B

else if input[0] = complete-setup then

if G [eid][1] ̸= progDE then abort

(complete-setup,ctkey,σKME)← input

m← (G [eid][0],eidKME,progKME,ctkey)

if Σ.Vrfy(spk,m,σKME)∧σKME ̸∈ CΣ.Q then

output (m,σKME) to CΣ

else if input[0] = provision then

if G [eid][1] ̸= progDE then abort
(provision,σ,eid,pkDF,skF,F)← input

m1← (G [eid][0],eidKME,progKME,(keygen,F))

if Σ.Vrfy(spk,m1,skF)∧ skF ̸∈ CΣ.Q then

output (m1,σ) to CΣ

m2← (G [eid][0],eid,progFE[F],pkDF)

if Σ.Vrfy(spk,m2,σ)∧σ ̸∈ CΣ.Q then

output (m2,σ) to CΣ

ct← PKE.Enc(pkDF,msk),output← (ct,crs)

σDE← CΣ.Osign(sid,eid,progDE,output)

forward (output,σDE) to B

else if input[0] = run then

if G [eid][1] ̸= progFE[F] then abort
(run,σ,eidDE,ctkey,ctmsg,crs,y′)← input

if y′ ̸=⊥ then

out← y′

else

m← (G [eid][0],eidDE,progDE,ctkey,crs)

if Σ.Vrfy(spk,m,σ)∧σ ̸∈ CΣ.Q then

output (m,σ) to CΣ

if N.V ((mpk,ct),π,crs) = 0 then return ⊥

mem← state

(output,mem′)← F(PKE.Dec(msk,ctmsg),mem)

σFE← CΣ.Osign(sid,eid,progDE,out)

forward (out,σFE) to B
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Hybrid 3 Let Hybrid 3 replace the output of calls to the provision procedure for en-

clave KME with new value (ct′,σ), where ct′ ← PKE.Enc(pkKD,0|sk|) for the legit-

imate pkKD,sk held within the enclave, and σ is a valid attestation signature for an

execution that produces ct′. If the PKE scheme internal to the KME program is CCA-

secure, the two hybrids are indistinguishable to an attacker. Let Hybrid 3.1 replace

the return value of calls to procedure provision on enclave DE with (ct′,σ), with

ct′← PKE.Enc(pkDF,0|sk|) and σ being a valid attestation signature on the produced

output. Similarly, this hybrid is indistinguishable to the previous if PKE provides CCA

security.

Below, we prove the following to lemmas, via reductions to CCA security of the

encryption scheme. The two reductions are quite similar and depicted below.

Lemma 3.3. If PKE is CCA secure, then H2 ≈ H3, over the randomness used by H2,

H3.

Lemma 3.4. If PKE is CCA secure, then H3≈ H3.1, over the randomness used by those

experiments.

Proof. We use an adversary Z who can distinguish between the two hybrids H2 and

H3 to construct an adversary R with the goal of breaking the CCA-security game chal-

lenger CPKE. The challenge encryption ct replaces the encryption of pkKD, the public

key used to securely transfer the master secret key between the progKME and progDE

enclaves. Z also instantiates a signature scheme Σ to reproduce the attestation role of

Gatt

Note: for this and all following reductions, we follow the convention that, for all

subroutines (or parts of subroutines) not explicitly defined in the current reduction, the

same code as the previous reduction applies. Furthermore, any calls to the challenge

game is replaced with the corresponding primitive.

Reduction RZ,CPKE

State variables Description

pkKD Public key for game CPKE

H ←{} Repository of message requests

G ←{} Collects all enclave programs registered by Z
state←{} Dictionary to hold the state for each function



86 Chapter 3. Steel

On message (SETUP,P):

if mpk=⊥ then

(mpk,msk)← PKE.PGen(1λ)

(spk,ssk)← Σ.Gen(1λ)

send GET to CR S and receive (CRS,crs)

if P = A then

send (SETUP,mpk) to SCA

else if P = B then

send (SETUP,mpk,eidKME) to SCB and receive (PROVISION,σ,eidDE,pkKD)

m0←msk;m1← 0|msk|

send (CHALLENGE,m0,m1) to CPKE and receive ct

σsk← Σ.Sign(ssk,(idx,eidKME,progKME,ct))

send (PROVISION,ct,σsk)) to SCB

On message (RESUME,eid, input) from B to Gatt:

if input[0] = init-setup then

if G [eid][1] ̸= progDE then abort

(init-setup,eidKME,crs)← input

output← (pkKD,eidKME,crs)

forward (output,Σ.Sign(ssk,(sid,eid,progKME,output)))

else

. . .

On message (Dec,k,c) from Z to PKE:

if k= skKD then

return CPKE.Dec(skKD,c)

else

return PKE.Dec(k,c)

On message (OUTPUT,b) from Z:

output b

Let Z be an adversary that distinguishes between H3 and H3.1; we construct an ad-

versary R which calls onto Z to win the CCA game, by serving the challenge ciphertext

to Z as pkDF, the encryption key between enclaves running progDE and progFE.

Reduction RZ,CPKE
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State variables Description

pkDF Public key for game CPKE

H ←{} Repository of message requests

G ←{} Collects all enclave programs registered by Z

On message (SETUP,P):

if mpk=⊥ then

(mpk,msk)← PKE.PGen(1λ)

(spk,ssk)← Σ.Gen(1λ)

send GET to CR S and receive (CRS,crs)

if P = A then

send (SETUP,mpk) to SCA

else if P = B then

send (SETUP,mpk,eidKME) to SCB and receive (PROVISION,σ,eidDE,pkKD)

ct← PKE.Enc(pkKD,msk)

σsk← Σ.Sign(ssk,(idx,eidKME,progKME,ct))

send (PROVISION,ct,σsk)) to SCB

On message (RESUME,eid, input) from B to Gatt:

if input[0] = init-setup then

if G [eid][1] ̸= progDE then abort

(init-setup,eidKME,crs)← input

(pk,sk)← PKE.PGen(1λ)

output← (pk,eidKME,crs)

σ← Σ.Sign(ssk,(sid,eid,progDE,output))

forward (output,σ) to B

else if input[0] = provision then

if G [eid] ̸= progDE then abort

m0←msk;m1← 0|msk|

send (CHALLENGE,m0,m1) to CPKE and receive ct

output← (ct,crs)

forward (output,Σ.Sign(ssk,(sid,eid,progDE,output)) to B

else

. . .

Hybrid 4 This hybrid differs from H3.1 in how the Proof of Plaintext Knowledge is
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computed for a message encryption. Namely, instead of making calls to the honest

prover, it simply creates simulated proofs using the trapdoor. The reduction defined

below receives oracle access to either P or S2. Therefore, by distinguishing between

the two experiments, one can break the zero-knowledge property of the NIZK scheme

N. More formally, we prove the following lemma.

Lemma 3.5. Assuming the zero-knowledge property of N,H3.1 ≈ H4, over the random-

ness used by those experiments.

Proof. Given adversary Z, which is capable of distinguishing between the two hybrids,

we define an adversary R, with the goal of breaking the zero-knowledge game CN. The

reduction against the zero-knowledge property of N is defined below.

Reduction RZ,CN

State variables Description

H ←{} Repository of message requests

G ←{} Collects all enclave programs registered by Z
J ←{} Storage of N proofs

state←{} Dictionary to hold the state for each function

(crs,τ)← N.S1 Simulated reference string and trapdoor

On message (SETUP,P):

if mpk=⊥ then

(mpk,msk)← PKE.PGen(1λ)

(spk,ssk)← Σ.Gen(1λ)

. . .

On message (READ,h) from party B to R EP :

m←H [h]; send GET to C R S and receive (CRS,crs)

r←{0,1}λ;ct← PKE.Enc(mpk,m;r)

send (CHALLENGE,(mpk,ct),(r,m)) to CN and receive π

J [ctmsg]← π

return (ct,π)

On message (P , input) from Z to N:

send (CHALLENGE, input) to CN and receive π

return π
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On message (OUTPUT,b) from Z:

output b

Hybrid 5 This hybrid is identical to H4, but instead of executing the decryption of

honestly generated ciphertexts, the decryptor enclave executes the extractor for the

NIZK scheme to obtain the original plaintext message. This value is then encrypted by

sending it to the ideal functionality, which stores it in its internal repository.

Lemma 3.6. Assuming the extractability property of N, H4 ≈ H5, over the randomness

used by those experiments.

Proof. Given an adversary Z capable of distinguishing between the two hybrids, we

define an adversary R with the goal of breaking extractability game CN.

Reduction RZ,CN

State variables Description

H ←{} Repository of message requests

J ←{} Storage of N proofs

G ←{} Collects all enclave programs registered by Z
state←{} Dictionary to hold the state for each function

(crs,τ)← N.S1 Simulated reference string and trapdoor

On message (RESUME,eid, input) from B to Gatt:

if input[0] = run then

if G [eid][1] ̸= progFE[F] then abort
(run,σ,eidDE,ctkey,ctmsg,crs,y′)← input

if y′ ̸=⊥ then

out← y′

else

if Σ.Vrfy(spk,(G [eid][0],eidDE,progDE,ctkey,crs),σ) = 0 then return ⊥

if J [ctmsg] =⊥ then

(ct,π)← ctmsg

if π ∈ J [(·,π)] then send (DECRYPT,F,⊥) to B and abort

(m, r)← E(τ,(mpk,ct),π)

if N.V ((mpk,ct),π,crs) = 0∨ PKE.Enc(mpk,m;r) ̸= ct∨ ctmsg ̸∈ CN.Q

then
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output 1 to CN

mem← state

(output,mem′)← F(m,mem);out← output

σFE← Σ.Sign(sid,eid,progDE,out)

forward (out,σFE) to B

else

...

Hybrid 6 This hybrid diverges from H5 by replacing R EP ’s copy of any message

encrypted by A with an encryption of a string of zeros with the same length as the

original plaintext message. Decryption is handled through the FESR functionality. The

two hybrids can be distinguished by an adversary who can tell apart the two encrypted

ciphertext, by winning the CPA security game.

Lemma 3.7. Assuming CPA security, H5 ≈εcca H6, over the randomness used by those

experiments.

Proof. Given adversary Z who can distinguish between H6 and H5, we construct an

adversary that can break CPA-security game CPKE

Reduction RZ,CPKE

State variables Description

pk Public key for game CPKE

G ←{} Collects all enclave programs registered by Z
H ←{} Repository of message requests

On message (SETUP,P):

if mpk=⊥ then

mpk← pk

(spk,ssk)← Σ.Gen(1λ)

send GET to CR S and receive (CRS,crs)

...

On message (READ,h) from party B to R EP :

m0←H [h];m1← 0|m0|

send (CHALLENGE,m0,m1) to CPKE and receive ct, r
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π← N.S2(crs,τ,(mpk,ct))

return (ct,π)

On message (Enc,k,m) from Z to PKE:

if k=mpk then return CPKE.Enc(pk,m)

else return PKE.Enc(k,ct)

On message (OUTPUT,b) from Z:

output b

Hybrid 7 In the last two hybrids we replace the encryption of the zero-strings (for

the secret keys of the internal scheme) with the original keys. Therefore we have the

following lemmas.

Lemma 3.8. Assuming CCA security, H6 ≈εcca H7, over the randomness used by those

experiments.

Lemma 3.9. Assuming CCA security, H7≈εcca H7.1, over the randomness used by those

experiments.

The reduction proceeds as in the parallel CCA hybrids (in the other direction) and

is thus omitted.

Summary Note how H7.1 is in fact equivalent to the Simulator: we have shifted to an

ideal world protocol (H1) where the protocol can proceed only if the simulator verifies

through attestation that the enclave programs are being run in the correct order (H2)

and we leak no information about inter-enclave secure channels (H3,H3.1). We then

switch, through H4 and H5, from using genuine NIZK provers and verifiers (respec-

tively) for honest parties into simulating the proof and extracting the witness (resp).

By switching from encrypting messages to strings of zeros (H6), we ensure no leak-

age is possible, while still using the original secrets for establishing secure channels

(H7,H7.1). The final construction corresponds to our definition of the simulator in 3.4,

and thus, through the subsequence of hybrids, protocol Steel UC emulates the ideal

functionality FESR.

We now argue that all requirements of the UCGS theorem with respect to Steel,

FESR and Gatt are satisfied. In particular we prove the following lemma.
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Lemma 3.10.

1. The functionality Gatt is a FESR-regular setup and subroutine respecting,

2. FESR,Steel are Gatt-subroutine respecting,

Proof. As required by [37, Definition 3.3], the global functionality Gatt is FESR-

regular, as does not invoke any new ITI of FESR and does not have an ITI with code

FESR as subsidiary. Gatt is clearly subroutine respecting. Also, FESR and Steel are

Gatt-subroutine respecting since they only make external calls to Gatt.

By the UCGS Theorem 2.3, Theorem 3.1 and the above lemma, UCGS security of

the Steel protocol is concluded, i.e. for any parent protocol ρ which is (Steel, IDEALFESR,ξ)-

compliant and (Steel,M[x,Gatt],ξ)-compliant for x∈ {IDEALFESR,Steel}, the protocol

ρφ→π UC-emulates ρ.

Update The proof in this chapter is preserved as it appeared in the published version

of this work [53]. In the last stages of compiling this thesis, we became aware of a

distinguishing attack between the real and ideal world. We discuss the nature of the

attack and potential mitigations in Chapter 6.
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AGATE: Augmenting the modeling of

Global Attested Trusted Execution

Computing is an endless cycle of

inventing ways to isolate code in a

private machine, followed by

inventing ways to make it easier for

those machines to interoperate

Carey Underwood
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While the functionality modelled by Gatt is a meaningful first step for modeling

attested execution, in this chapter we will argue that it is too strong to capture realis-

tic TEEs. As discussed in Section 2.2.3, there are many practical attacks that affect

current implementations of TEEs, and the abstract Gatt functionality of Pass, Shi, and

Tramèr [230] we used in the previous chapter only models perfect enclave execution.

Therefore, no TEE today can realise it (in a UC-emulation sense).

At a philosophical level, we will probably always live in a world where various

TEE implementations will be available over time from different vendors, each with

different capabilities. When a cryptographer or protocol designer begins working on

their specification, they inevitably make certain assumptions about what features are

required from their TEEs to support the correctness and security of their protocol. Pre-

vious works [278, 122] (as described in Section 2.2.4.1) have shown that, even if the

Gatt functionality is weakened, it is possible to prove security guarantees for certain

protocols. If these models’ assumptions are unrealistic given the capabilities of real

TEE platforms at the time, the proofs will not be that informative for constructing de-

ployable protocols in the real world. One way to rescue existing proofs might be aug-

menting a realistic TEE implementation with additional firmware and secondary pro-

tocols, to provide additional functionality or shield it from certain attacks, and showing

the equivalence of the augmented TEE with a stronger setup.

To this end, this chapter provides a more careful treatment of trusted execution than

the existing literature, focusing on the capabilities of enclaves and adversaries. Our

goal is to provide meaningful patterns to show how different classes of TEEs compare

to each other, in particular how a weaker TEE functionality can UC-emulate a stronger

one, given an appropriate mechanism to bridge the two. We give a new, “modular”

definition of TEEs, which captures a broad range of pre-existing functionalities defined

in the literature, while maintaining the high level of abstraction of the previous chapter.

While our goal is not directly to model implementations of specific commercial TEE

providers, our modular definition provides a way to capturing more meaningful and

realistic hardware capabilities. We provide a language to characterise how a class of

TEEs

The chapter is structured as follows: in Section 4.1, we show that an overtly sim-

plistic model of trusted execution can lead to protocols that can be proven secure but

will fail in a real world scenario. This is exemplified by the introduction of rollback

and forking attacks, which violate the security of Steel. We then propose, starting

from Section 4.2, a generic framework for specifying Trusted Execution functionali-
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ties with granular enclave interfaces and adversarial powers. The key characteristic of

our framework is to provide three parameters for each TEE setup: the set of features

that an enclave running on the TEE can access; the set of attacks the adversary is al-

low to mount; and what enclave features are included in an attestation signature. In

Section 4.3 , we provide a “Zoo” of enclave capabilities, adapting pre-existing formu-

lations of enclaves into our model, as well as new capabilities that form useful building

blocks for building protocols involving TEEs. Section 4.4 provides a notion of equiv-

alence between different classes of TEEs, sketching a path to compiling programs

designed for more powerful TEEs into programs that can run on weaker ones. Specif-

ically, we use the feature and attack sets as parameters along which we can compare

different types of TEE. We provide a generic compiler (and associated proof strategy)

that shows how any TEE setup can be UC-emulated by the combination of a setup

with fewer features, and a protocol that implements the missing one. Similarly, the

combination of a setup with more attacks, and a protocol to defend against a portion of

them, UC-emulate a setup with equivalent features, but without those attacks. Finally,

we end the chapter with an illustrative example in Section 4.5, where we sketch how

to rescue Steel security from rollback attacks through a simple protocol that relies on

access to trusted storage.

Notation Unlike the previous chapter, our modelling in the next few sections will

involve some UC-specific machinery, so we temporarily abandon some of the short-

hands introduced in Section 2.1.2.3 to refer to some of the more low-level components

of the framework.

As before, we use Interactive Turing machine Instances (ITI) to model any com-

putation. Most of our formalisation in this chapter relies on structured protocols [75,

Section 5.1]. A structured protocol is a list of nested ITIs, on which a higher level

ITI (generally referred to as shell) has full access to read or overwrite the tapes of any

lower level subroutine ITI (which we refer to interchangeably as the virtual ITI, or by

their extended identities). ITIs have access to a number of tapes to store their identity,

code, running memory, and communicate with other machines. Although the descrip-

tion of an ITI is not precise or prescriptive in terms of how it implements the com-

putation, we assume that the program description uses some well-defined language,

perhaps similar to a low level programming language or assembly. We represent each

individual instruction as a command with optional arguments, which we represent us-

ing function call notation command(argument) sometimes with optional parenthesis
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(command argument e.g. for the case where command = return). We overload the set

membership operator ∈ to verify that the command component of the instruction be-

longs to the set. The code of an enclave can be seen as a list of ITI instructions of this

type, and the notation “for instruction i ∈ prog do” can be interpreted as iterating over

the list of instructions for program prog (including command and arguments) without

executing them (i.e. by advancing only the head of the shell over the tape). Conversely,

when an ITI ρ in a structured protocol (see 2.1.2.1) contains pseudocode

begin executing input on π

for next instruction i on π do f (i)

it should be read as ρ iterating through the code of a subroutine with extended identity

π, and for each instruction i, ρ executes subroutine f (i) to advance the state of π (up-

dating its tapes and advancing π’s head), while performing any additional operations

in ρ’s code.

4.1 Rollback and Forking Attacks

We now extend the Gatt functionality to model rollback and forking attacks against

an enclave, and show how this novel Grollback
att functionality does not allow securely

running the Steel protocol.

Our model of rollback and forking attacks is partially inspired by the model of

Matetic et al. [201], which distinguishes between enclaves and enclave instances. En-

clave instances are independent copies of an enclave which share the same code but

each maintain a distinct memory state. As with Gatt, where the untrusted party has to

call subroutines individually, the environment is not allowed to interact directly with

a program once it is instantiated, except for pausing, resuming, or deleting enclave

instances. Additionally, their model provides functions to store encrypted memory

outside the enclave (Seal) and load memory back into an instance (OfferSeal).

In a typical rollback attack, an attacker crashes an enclave, erasing its volatile mem-

ory. As the enclave instance is restarted, it attempts to restart from the current state

snapshot of sealed memory. By replacing this with a stale snapshot, the attacker is able

to rewind the enclave state.

In a forking attack an attacker manages to run two instances of the same enclave in

parallel, such that, once the state of one instance is changed by an external operation,

querying the other instance will result in an outdated state. This is easily achieved on
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TEEs where the attestation does not distinguish between two enclave instances running

on the same machine. On a system where attestation uniquely identifies each enclave

instance, a forking attack can still be launched by an attacker conducting multiple

rollback attacks and feeding different stale snapshots to a single enclave copy [62].

Our new functionality Grollback
att employs some of these ideas to model the effect

of both rollback and forking attacks. We replace the internal memory variable mem

variable of Gatt with a tree data structure, which stores the enclave’s memory over time.

The honest caller to the functionality will always continue execution from the memory

state stored in an existing leaf of the tree. An adversary can instead mount a rollback

attack by resuming execution from an arbitrary node (through a unique node identifier,

which the adversary learns after each execution through message ITER). On a RESUME

call that specifies such a node, the functionality loads the enclave state at that location

before executing the input subroutine. The output of the computation mem′ is then

appended as a new child branch to the tree. After the rollback has taken place, the

adversary can choose whether to continue the execution from this newly reset state

(by calling resume without passing a valid node argument), execute a further rollback,

or mount a forking attack by interactively choosing nodes in different branches of

the tree. The functionality is parameterised with a signature scheme and a registry to

capture all platforms with a TEE, like in the original formulation. We define algorithms

access(t,n) to return the content of node labelled n in tree t; and insertChild(t,n,c) to

return the new tree and node label resulting from inserting a child leaf with content c

under node n in tree t (insertChild({},⊥,ε) creates a new tree).

Functionality Grollback
att [Σ, reg,λ]

State variables Description

vk Master verification key, available to enclave programs

msk Master secret key, protected by the hardware

T ← /0 Table for installed programs

On message INITIALIZE from a party P:

let (spk,ssk)← Σ.Gen(1λ),vk← spk,msk← ssk

On message GETPK from a party P:

return vk

On message (INSTALL, idx,prog) from a party P where P.pid ∈ reg:
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if P is honest then assert idx= P.sid

generate nonce eid
$←{0,1}λ

(tree, root)← insertChild({},⊥,ε)
store T [eid,P]← (idx,prog,root, tree)

return eid

On message (RESUME,eid, input,node) from a party P where P.pid ∈ reg:

let (idx,prog, lastnode, tree)← T [eid,P], abort if not found

if P is honest then let node← lastnode

let mem← access(tree,node)

let (output,mem′)← prog(input,mem)

let (tree′,child)← insertChild(tree,node,mem′)

if P is corrupted then send (ITER,eid,node,child) to A

let update T [eid,P]← (idx,prog,child, tree′)

let σ← Σ.Sign(msk,(idx,eid,prog,output)) and return (output,σ)

The proposed rollback model is perhaps somewhat simplistic, as it only allows

“discrete” rollback operations (just as Gatt allows descrete enclave resumes), where

memory states are quantised by program subroutines. It is conceivable that real world

attackers would have a finer-grained [68] rollback model, where they can interrupt

the subroutine’s execution, and resume from an arbitrary instruction. A limitation of

the Gatt (and Grollback
att ) model is that it does not provide us with such an instruction-

level control over the program execution, meaning that at this level of abstraction it is

impossible to model this type of attacks.

4.1.1 Rollback Attacks on Steel

Having introduced a new functionality with rollback and forking attacks, we are left

with the question of whether the security statement for Steel (Conjecture 3.1) holds

if we replace Gatt with Grollback
att . It is clear that we can not replace Gatt functionality

through the UC composition theorem, since Grollback
att can not UC emulate Gatt - we

can not construct a simulator to rollback Gatt without changing its interface. Since the

adversary is more powerful in the Grollback
att -hybrid world, it might lead to attacks that

are not otherwise possible in the Gatt-hybrid world.

As a potential example, Yilek [306] presents a generic virtual machine rewinding

attack on a program that uses an IND-CCA or IND-CPA secure encryption scheme. By

applying repeated rollback attacks and running the encryption algorithm on multiple

messages with the same randomness, the adversary can learn additional information on
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an encrypted message. It is not clear whether this attack would hold in our model, since

the functionality does not explicitly state whether the random coins are stored in the

memory being rewound. Since TEE platforms such as SGX usually have access to a

hardware-based source of randomness [29], we assume (for now) that the attack is not

possible, and that an enclave can access fresh randomness through the ITI random tape

of the functionality. We will resume the discussion of this choice in the next section.

Instead of providing a generic attack, it is sufficient to show how Steel would be

affected by the weaker functionality. Recall, from Chapter 3, that Steel is a protocol

that UC-emulates ideal functionality FESR by letting the untrusted decryptor B evalu-

ate stateful and randomised function F on encrypted data. B runs a decryption enclave

(with code progDE) to fetch the master decryption key msk from authority C, and func-

tional enclave progFE[F] to compute the function. progDE shares a F-specific functional

key with the functional enclave only if it has received evidence (through attestation)

that it is running the right program.

Running Steel in the Grollback
att -hybrid world would not allow a malicious B to learn

anything about the state of function F (through the functional enclave). Enclave mem-

ory is still encrypted (sealed) in this setting, and the adversary only learns the labels

and structure of the memory tree, not its contents. However, B can use its new rollback

abilities to make Steel produce results that would not be possible in the Gatt-hybrid

world (or through the ideal functionality). As an example, take the following (stateful

and randomised) function PRF-WRAPPER:

function PRF-WRAPPER(x,mem)

if mem= /0 then

K← x

Store mem← K

return ACK

else if mem=⊥ then

return ⊥
else

Store mem←⊥
return F′(K,x)

PRF-WRAPPER implements a one-time Pseudo-Random Function: on its first call,

it stores the input as a key; for the next call, it samples keyed PRF F′; thereafter it

returns ⊥.

An adversary who has:
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1. completed initialisation of its decryption enclave with enclave id eidDE;

2. obtained a functional key sk through the execution of keygen on eidKME;

3. initialised a functional enclave for PRF-WRAPPER with enclave id eidF, public

key pkDF, attestation signature σ, and leaked node id node for a leaf of the mem

tree in eidF;

can execute the following sequence of operations for three ciphertexts ctK,ctx,ctx′ ,

encrypting a key K and plaintexts x,x′:
1: ((ctkey,crs),σDE)← Gatt.resume(eidDE,(provision,σ,eid,pkDF,sk))
2: ((computed,ACK), ·)←Grollback

att .resume(eidF,(run,vkatt,σDE,eidDE,ctkey,ctk,crs,⊥),node)
3: // the adversary receives message (ITER,eidF,node,node

′) from Grollback
att

4: ((computed,y), ·)←Grollback
att .resume(eidF,(run,vkatt,σDE,eidDE,ctkey,ctx,crs,⊥),node′)

5: ((computed,y′), ·)←Grollback
att .resume(eidF,(run,vkatt,σDE,eidDE,ctkey,ctx′ ,crs,⊥),node′)

6: // node′ is the same node id as in the previous call (and thus to the parent
of the current leaf in mem)

If we visualise the function computed by PRF-WRAPPER as a finite state automa-

ton, the adversary violates correctness as a result of this execution trace by inserting

an illegal transition (with input ε) from state access(tree,node′.child) = ⊥ back to

access(tree,node′) = [K], and then back to state ⊥ with input x′. The adversary can

then obtain the illegal set of values y← FK(x) and y′← FK(x′), whereas in the ideal

world where it is communicating with the ideal FESR functionality, after obtaining y

the only possible output for the function would be ⊥ (the only legal transition from

state ⊥ leads back to itself). The simulator is unable to address this attack, as the

memory state is internal to the ideal functionality, and the key will always be erased

after the second call.

One might think that on a second call for resume, the simulator could respond by

sampling a value from the uniform distribution and feed it through the functional en-

clave’s backdoor; however, the environment can reveal the key K and messages x,x′

to the adversary, or conversely the adversary could reveal the uniform value to the

environment. Thus the environment can trivially distinguish between the honest PRF

output and the uniform distribution, and thus between the real and ideal world. Note

that this communication between environment and adversary is necessary for univer-

sal composition as this leakage of K,x,x′ could happen as part of a wider protocol

employing functional encryption.
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4.1.2 Rollback attacks on Iron

We also note that Stateless functional encryption as implemented in Iron [127] is re-

silient to rollback and forking because there is little state held between each enclave

execution. Since the authority C is trusted, the only enclaves liable to be attacked are

DE and FE[F].

DE stores PKE parameters after init-setup, and the decrypted master secret key after

complete-setup. The adversary could try to gain some advantage by creating multiple

PKE pairs before authenticating with the authority, but will never have access to the

raw msk unless combining it with a leakage attack. Denial of Service is possible by

creating concurrent enclaves (either DE or FE) with different public keys, and passing

encrypted ciphertexts to the "wrong" copy which would be unable to decrypt (but it’s

not clear what the advantage of using rollback attacks would be, as the adversary could

always conduct a DoS attack by denying the enclave access to any necessary system

resources).

4.2 A modular Gatt Setup

Motivation In the previous section, we extended the Gatt functionality of [230] to

provide rollback and forking attacks. While analysing the consequences of the weaker

ideal functionality when used in conjunction with Steel, we remarked that the model

does not account for how randomness is sampled. For that matter, the PST model does

not really explain how enclave execution takes place in any detail. The abstraction

of TEEs as an isolated execution mechanism with an easily verifiable proof of com-

putation is a key insight of the model, and its promise of using the abstraction as a

block box for constructing protocols a major selling point. However, as we have seen

from the above example, the lack of detail can hamper reasoning about adversarial

behaviour.

The formulation of Gatt does not explicitly expose any TEE specific hardware or

implementation details, beyond the abstract interface that allows the local party to

install a program and execute it. When describing the components of Gatt Pass, Shi,

and Tramer [229, Section 3.2] explicitly state that the functionality emerges from a

combination of the TEE features with some assumed firmware to provide this type of

confidential computing service. In particular, they attribute the generation of unique

per-enclave ids at installation, which are not guaranteed by all TEE architectures, to
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this firmware sampling a nonce from a unique key distributed to each TEE by the

manufacturer during provisioning. A more careful approach would then consider the

functionality provided by Gatt as implementable by a combination of hardware, trusted

firmware, and system-defined enclaves. The attestation signature guarantees that all of

these components were acting in concert at the time when an output was generated.

Examining these components in more detail provides two advantages. First, it

allows more meaningful relaxations of the security guarantees, by allowing to distin-

guish which components of the system can be compromised. Additionally, once we

stop thinking of the functionality as a monolithic hardware component, it becomes

natural to consider alternative features that the manufacturer or third parties might

augment the TEE with. In particular, we may think of the combined hardware and

software libraries an enclave has access to during its execution “runtime” as providing

a kind of API. While the list of features provide by Gatt could be considered a “stan-

dard” enclave interface, it is possible to imagine additional API calls available to the

enclaves, for example a trusted clock [90], monotonic counters[90, 200], secure access

to GPU compute resources [277, 290, 312] etc. Regardless of how these interfaces

are implemented (e.g. by modifying the architecture or trusted firmware, or running

the enclave through a “wrapper” library that interacts with a trusted system enclave, or

even through a distributed protocol between multiple mutually untrusted enclaves), the

attestation mechanism should capture their presence. Beyond showing that an enclave

is running the correct program, a sound attestation mechanism also needs to certify to

the verifier that the TEE provides the correct version of the API, otherwise the program

code can not provide its security guarantees. In other words, a TEE functionality attests

to the combination of (prog, runtime) rather than the mere application code prog.

Features, Attacks, and Attestation We now extend the Gatt functionality from

[230] (henceforth referred to as GPST
att ) to allow defining a larger class of TEE se-

tups. Our goal is to capture the runtime behaviour of enclaves, without delving into

the specifics of their implementation. To maintain this level of abstraction, we use a

number of idealised interfaces.

Within our new formalism, a TEE application developer can choose to target a min-

imum set of features required bv their applications. A standard error will be returned if

such a program is installed on an instance of the TEE functionality that does not sup-

port the feature set. For each possible modular formalisation of a TEE Gmod
att , we thus

define a set of feature oracles O, which represent the library of subroutines that are
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available to an enclave program. A feature of this kind is a polynomial time algorithm,

as implemented by the runtime combination of hardware and software in that version

of Gmod
att , including any communication with external parties. We also define a set of

attack oracles A to capture adversarial behaviour. This can be thought as a parame-

ter chosen by a protocol designer that captures “allowable” attacks in the current TEE

setting under which the target protocol can still be proven secure. Any cryptographic

protocol that wants to use TEE will therefore need to provide a lower bound for the

set of required features O, and an upper bound for the set of tolerated attacks A, to

parametrise their chosen version of Gmod
att . Relationships between different versions

of TEEs are captured by the difference of these two sets, with equivalence statements

made possible by running some additional runtime along enclave programs (either to

increase the size of interfaces provided by O, or to reduce the attacks available in A).

We also introduce modularity in the attestation procedure. This is both to allow

capturing a greater class of TEE architectures, as well as being a technical require-

ment. A reader familiar with the simulation framework will quickly realize that our

programme of proving that, given the right runtime, a weaker TEE setup Gmod
att can

UC-emulate the stronger G′mod
att , is hindered by the usage of a fixed signature scheme

to model attestation. Since the two different TEE functionality would each sign dif-

ferent (prog, runtime) messages, it would be trivial for an environment to distinguish

whether it is communicating with the real or ideal world. We therefore abstract the

attestation mechanism in order to “program” the signature scheme.

Our model ties attestation and its verification to the specific Gmod
att functionality

instance the user interacting with: the public parameters of the functionality allow a

verifier to directly assess the capabilities of the attested enclave runtime and its adver-

sary, and make an informed trust decision based on the feature and vulnerability of the

enclave they are communicating with.

The functionality We now highlight the differences between the new formulation of

Gmod
att (Fig. 4.1) and the original GPST

att functionality (introduced in Section 2.2.4.1, and

here reproduced in Fig. 4.2.

We iterate on the work of Section 3.4 to more carefully follow the conventions

and formality of modern UC versions compared to GPST
att . In particular, we now model

enclaves as structured ITI subroutines to the Gmod
att functionality. On installation of an

enclave, the functionality spawns a new ITI subroutine with composite extended iden-
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Functionality Gmod
att [λ, reg,O,A,S]

State variables Description
vk← ε Master verification key

Sign← ε Attestation Signing algorithm
S ← /0 Table for signed messages
T ← /0 Table for installed programs

On message INITIALISE from a party P:
send INITIALISE to A and receive k,s
vk← k,Sign← s

On message GETPK from a party P:
return vk

On message (VERIFY,σ,m) from a party P:
// Returns Boolean value
return m ∈ S [σ]

On message (INSTALL, idx,prog) from a party P where P.pid ∈ reg:
if pid is not corrupted then

assert idx= sid
for instruction i ∈ prog do

if i ̸∈O then
return MissingInstructionError

generate nonce eid
$←{0,1}λ, store T [eid,pid] = (idx,prog)

send INSTALL to (shO,A[prog],(eid||pid,“att”||idx))
return eid

On message (RESUME,eid, input,attack) from a party P where P.pid ∈ reg:
let (idx,prog)← T [eid,pid], abort if not found
if attack= ε∨pid is not corrupted then

send input to (shO,A[prog],(eid||pid,“att”||idx)) and receive output
else

assert attack ∈ A
send (attack, input) to (shO,A[prog],(eid||pid,“att”||idx)) and receive output,aux
if aux ̸= ε then

query A with (attack,aux) and receive the reply CONTINUE

let meas← S(configuration of shO,A[prog])
let σ← Sign(meas),S [σ]← S [σ]||meas
return (output,σ)

Figure 4.1: Global functionality Gmod
att
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Functionality Gatt[Σ, reg,λ]

State variables Description
vk Master verification key, available to enclave programs

msk Master secret key, protected by the hardware
T ← /0 Table for installed programs

On message INITIALIZE from a party P:
let (spk,ssk)← Σ.Gen(1λ),vk← spk,msk← ssk

On message GETPK from a party P:
return vk

On message (INSTALL, idx,prog) from a party P where P.pid ∈ reg:
if P is honest then assert idx= P.sid
generate nonce eid

$←{0,1}λ

store T [eid,P]← (idx,prog, /0)
return eid

On message (RESUME,eid, input) from a party P where P.pid ∈ reg:
let (idx,prog,mem)← T [eid,P], abort if not found
let (output,mem′)← prog(input,mem)
store T [eid,P]← (idx,prog,mem′)
let σ← Σ.Sign(msk,(idx,eid,prog,output)) and return (output,σ)

Figure 4.2: The original GPST
att functionality
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tity1 (shO,A[prog],(eid||pid,“att”||idx)), encoding the program prog, oracles O,A, the

unique enclave ID eid, the identity pid for the party that installed the enclave, and the

claimed session identity idx. The new subroutine is part of a UC structured protocol,

where the top level subroutine with code shO,A[prog] spawned by Gmod
att is known as

a shell, and a second subroutine with code prog created by the shell is known as the

body. We use the shell of our structured protocol to capture modelling instructions

related to the oracles, while the body is instantiated with the unaltered program code

for the enclave (see Figure 4.3 for a graphical representation). Running enclaves as

separate suboutine ITIs is functionally equivalent to running the input code within the

global functionality as in the original treatment. It does provide, however, a cleaner

abstraction, in that we are able to explicitly instantiate an ITI that runs the code of

the enclave program installed, rather than having the ideal functionality act as an in-

terpreter. In particular, our formalism now involves enclaves run by different parties

being executed as separate ITIs, which we believe is a more natural model. Enclave

programs are subroutine respecting in that the shell rejects any input message not sent

through the Gmod
att functionality, and will only accept subroutine output messages from

machines in its extended session. When resuming an enclave, the calling party might

need to provide some additional import, depending on how much work the shell is

required to carry out in addition to the enclave code execution in itself (e.g. if an en-

clave calls a feature that involves significant communication with external parties to

be implemented, Gmod
att needs to be activated with sufficient import to activate those

subroutines).

We parameterise each instance of Gmod
att by the static sets O,A which capture feature

and adversarial oracles respectively. On installation of a new enclave, Gmod
att first checks

that all instructions in the proposed program code correspond to a call to one of the

oracles in O, and aborts with an error message if they are not. Both sets are the basis

for the definition of the shell for all enclave subroutine ITIs installed by that instance

of Gmod
att . We use the shell mechanism device to help us capture a specification of how

the enclave program and the adversary can interact with the runtime. In particular, for

each unique combination of oracles, we have to give a specific shell definition.

The shell detects when its enclave calls a feature oracle at runtime, and provides

a return value. This can be derived through some local computation conducted by the

shell, potentially after communicating with the adversary or other parties; or delegated

1recall that the identity of an ITI is made up of two strings: party ID and session ID. An extended
identity combines the code for the ITI with the identity
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Figure 4.3: When a program with code P is installed on a Gmod
att enclave, the functionality

spawns a new structured protocol subroutine with shell shO,A[] and body P. For some
interfaces I ∈O, the shell will outsource its computation to some external functionality
F . The adversary A can interact with the enclave shell for any attacks A ∈ A through
Gmod
att . Both shO,A[] and F can leak additional information to A
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to a distinct subroutine. When defining shell in this work we will generally use ideal

subroutines, but this can be implemented through a real protocol without changing the

definition (through UC-emulation).

A corrupted party is allowed to specify an auxiliary command along with their re-

sume instructions that is executed by the shell in conjunction or instead of the normal

program execution. The adversarial oracle is allowed to send a message to the adver-

sary after the RESUME call has completed, and the adversary can in turn prevent the

output of the program from being released with an attestation. The shell also handles

any communication between enclaves that might be prompted by an attacker or feature

oracle.

Finally, we parameterise the functionality by S, a function that defines the contents

of the attestation message for each enclave’s execution. The original GPST
att models

an anonymous attestation signature scheme, and as such always produces an attesta-

tion signature tied to the set of arguments (idx,eid, prog,output). This includes the

claimed session ID for the current protocol executing the enclave, its unique enclave

ID, the program code and the output of the most recent computation. Replacing this

fixed data structure with a function allows us to model a broader range of attestation

primitives, such as non-anonymous attestation (e.g. by including the UC party ID as

one of the returned values, or a long-term public key tied to the party identity, as out-

lined in [229, Section 8.4]). We further relax the attestation mechanism of the GPST
att

functionality by allowing the adversary (through the simulator in the ideal world) to

choose the format of attestation signatures, to allow the addition of details lacking in

the high-level abstraction. Rather than having a full-fledged offline digital signature

algorithm, the adversary provides (during the INITIALISE phase of the setup) Gmod
att

with a public key and a signing algorithm s. The algorithm s is not required to be a

well-formed signature scheme or guarantee typical security properties such as existen-

tial unforgeability. Therefore, Gmod
att implements signature verification by maintaining

a map S of all signed strings and corresponding signatures generated by Sign. Verifica-

tions require sending a message to the setup, which checks whether it did produce the

signed output through an “ideal” table lookup, rather than running a real verification

algorithm as specified by the signature scheme. We still allow fetching a verification

key for interface compatibility with GPST
att , but any environment party that has obtained

the relevant verification algorithm and key from the adversary will not have any guar-

antees of existential unforgeability.

When showing UC-emulation between two TEE setups, the simulator can provide
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a modified version of these algorithms to convince the environment that the ideal world

TEE shares its runtime with the real world TEE. Take an adversary, for instance, that

selects a signature scheme Σ, and initialises a Gmod
att instance with closure s(meas) =

Σ.Sign(sk,meas), such that on a RESUME call, Gmod
att applies s to the value produced

by function S over the configuration of the enclave ITI, the enclave measurement. On

receiving algorithm s from the adversary, the ideal world simulator can derive a new

s′(meas) = s(R(meas))). R is a transformation on the measurement that preserves all

of its information, except that, if the measurement contains a public commitment to

the program executed in the enclave (such as a hash of its source code), and the real

world Gmod
att functionality is running code of type prog = (app, runtime) for a specific

runtime library, R replaces the commitment to enclave code app with a commitment to

(app, runtime). This means that attestations in the ideal world will look like attestations

to (app, runtime), despite Gmod
att only installing and executing app as part of its enclave.

Of course, app still needs access to the service offered by the runtime, but in the ideal

world it directly accesses the idealised features in the O set.

It is easy to show that GPST
att UC-emulates Gmod

att for the sets of oracles and mea-

surement function that correspond to GPST
att (which we describe in the next section).

We construct a simulator that selects the exact signature scheme specified in GPST
att .

Note that the opposite direction Gmod
att UC-emulates GPST

att is more subtle. In fact, it

is clear that the statement can not hold for all possible signature schemes provided

by an adversary. Consider the null signature scheme where the signing algorithm

Sign(ssk,m) = 0λ; the signature scheme is still valid under the definition of Gmod
att , but

it allows the environment to learn whether an enclave has produced a specific message,

without having to communicate with it (by simply querying the ideal functionality for

verification of an arbitrary measurement produced by S). This is not possible in GPST
att .

A minimum entropy requirement for signatures provided by the adversary would there-

fore be necessary (but not sufficient) for the other direction of the equivalence.

A recent work by Canetti et al. [86] shows, as a corollary of the UCGS composition

theorem, that if a global protocol G UC-emulates G′ with respect to simulator S, then it

is possible, in the general case of any context protocol ρ, to replace any subroutine call

from ρ to G with a call to the combined subroutine of G′ and S. This enables us to port

any existing proofs that rely on GPST
att (provided that the proof is valid under UCGS

rather than GUC) into our new model, by simply replacing GPST
att with the combination

of the Gmod
att instance with equivalent O,A oracles (which we describe in Section 4.3.1),

and the simulator that at instantiation chooses the precise GPST
att signature scheme over
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the usual (idx,pid,prog,output) measurement produced by S.

4.3 Defining a Gmod
att Zoo

We now provide the definition for several sets of Gmod
att oracle instantiations, aiming to

capture all existing variants of GPST
att in the literature, as well as some natural extensions

related to real world TEE realisations and attacks. Instantiating a shell for the func-

tionality and adversarial oracles is a required step for using a new Gmod
att variant, and we

have made efforts to write shells modularly so that they are easy to reuse. This does not

mean that we can directly apply clean-room UC composition, but the structure of the

shells makes it easy to mix and match them as required to handle additional oracles.

In particular, most shells are structured around a loop that examines all instructions

executed in the enclave subroutine ITI. When the instruction matches a specific oracle

call, the shell shows how to implement it (in an ideal way). Some shells (such as the

one presented in Section 4.3.4), modify the structure of ITIs created by the shell, but

are still fully compatible with the formulation for the other shells.

For the remainder of this section, we consider versions of Gmod
att that use the same at-

testation signature function S as GPST
att i.e. anonymous attestastions over (idx,eid,prog,output),

unless stated otherwise .

4.3.1 GPST
att

We begin by reformulating GPST
att in the language of Gmod

att . While this is not made

explicitly in the original work, GPST
att relies on the following features:

• Addressable instructions: enclave execution begins at arbitrary instructions ad-

dressed through labels; in other words, the enclave program defines some en-

trypoint as functions/procedures/subroutines that can be called by the registerd

party that installed the enclave, along with optional input arguments. On every

execution, the enclave returns some output with an associated attestation signa-

ture

• Stateful resumes: each RESUME instruction is atomic, meaning that the subrou-

tine will execute perfectly without any possibility for adversarial intervention.

The state of the enclave is maintained across each sequential RESUME execu-

tion, and the adversary is not able to erase or otherwise tamper with it
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• Sample Randomness: enclave programs are assumed to provide a true source of

randomness (of arbitrary lengths)

• Unique Enclave Identifiers: a unique enclave ID is generated as a cryptographic

nonce during enclave installation. Enclave IDs should be unique for all enclaves,

regardless of which party installed them

• Attestation verification: attestation signatures can be verified from within the

enclave program, without having to trust the external OS code to provide the

attestation verification key as an input.

The first three notions are usually considered standard for Interactive Turing Ma-

chines. We therefore define the standard oracle set Ostd to capture all ITI instructions

that are standard for local computation. Although the operation of an Interactive Turing

Machine are much more abstract, this can be thought of as the set of microarchitectural

instruction provided by the processing unit executing the ITI. Attestation verification

is explicitly not used in the GPST
att paper[229, page 23], but we include it because many

GPST
att -hybrid protocols in the literature require the ability of verifying attestation inside

an enclave. It could be argued that adding a capability to verify the attestation within

an enclave makes the functionality less composable than intended, due to the inability

to swap the fixed signature scheme with a call to an attestation service as provided by

Intel for SGX. Gmod
att resolves this by moving verification to an abstract check in the

functionality rather than verification of a concrete signature scheme.

We also note that the GPST
att model forbids the enclave to have access to the UC PID

for the party that is running it. While this is not explicitly stated, enclave programs with

PID access could assist the party to establish a secure channel with another enclave-

enabled party [229, Section 3.3].

As for the adversarial powers, even in the scenario where a host party is fully

corrupted, adversarial interactions are limited when it comes to the PST enclaves. For

any fully corrupted party, a GPST
att adversary is able to install programs with arbitrary

sessions identifiers under that host, honestly execute an enclave, and verify attestation

signatures. These behaviours are all captured by default in the Gmod
att functionality, so

no additional attack is required.

For capturing GPST
att under Gmod

att , we thus define O to be the union of Ostd and

{AttestVerify}, and A = {}. We now give an implementation for a UC shell that

models enclave access to the oracle sets as defined. The extended identity of the shell

is defined as (shO,A[prog],(eid||pid,“att”||idx)), where the PID is a concatenation of
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the enclave identifier generated by Gmod
att and the PID of the source machine which

installed the enclave; the session SID is a concatenation of string att and the session

of the protocol under which the enclave was installed. The enclave itself is a (virtual)

subroutine ITI with extended identity (prog,(eid, idx)). While this is a simple shell,

we examine it in detail, as it introduces patterns that are replicated in more complex

shells later in this chapter.

shO,A[prog]

The shell is defined for O=Ostd∪{AttestVerify} and A= {}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))
On message INSTALL from Gmod

att :

if virtual ITI (prog,(eid, idx)) does not exist, create

On message input from Gmod
att :

begin executing input on (prog,(eid, idx))

for next instruction i on virtual ITI do

if i ∈Ostd then

allow (prog,(eid, idx)) to execute i

else if i= AttestVerify(σ,m) then

send (VERIFY,σ,m) to Gmod
att and receive v

append v to subroutine output tape for virtual ITI

else if i= (return v) then

return v with source (shO,A[prog],(eid||pid,“att”||idx))

The shell receives message INSTALL when it is first created from Gmod
att , and it

initialises the virtual ITI that will actually execute the enclave program. We make this

step explicit in the pseudocode to mirror the interface of some of the shells presented

later in the chapter, although it is not strictly necessary since UC creates a non-existing

ITI when it first receive a message (if the force−write flag is set to 1).

Any other (non-INSTALL) input input the shell receives from Gmod
att must be the

argument of a RESUME call, since the adversary is not able to give an attack mes-

sage. Rather than writing input to the virtual ITI’s input tape and letting it execute

prog(input) directly, the shell observes the current configuration of (prog,(eid, idx)),

and the instruction i that would be executed if it was activated with input (we denote

this as “begin executing input on (prog,(eid, idx))”). With this the shell enters its main
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loop: depending on what type of instruction i is, it executes i following the specification

in the appropriate branch, updates the configuration of (prog,(eid, idx)), and chooses

the next instruction.

The behaviour of this shell within the loop is fairly simple: most program instruc-

tions it considers will be in the standard oracle set Ostd. In this case, the shell activates

(prog,(eid, idx)) with input i; as this is a simple instruction that any ITI can compute,

the shell does not need to modify its behaviour, and it will allow the virtual ITI to exe-

cute it (updating its work tape) and immediately halt. The activation token now returns

to the shell, which can select the next instruction i from the updated configuration.

When the instruction is of type AttestVerify(·), the shell does not activate (prog,(eid, idx)),

but rather sends a message to Gmod
att to verify the attestation signature. Once it receives

a boolean response, it writes it to the subroutine output tape of (prog,(eid, idx)), and

modifies the location of the tape head on its work tape. This essentially convinces the

enclave virtual ITI that on its last activation it called the AttestVerify subroutine, and

has just received its return value. We use this mechanism extensively in the rest of the

section, as it allows modelling feature oracles so that the enclave program is oblivious

of how they are computed.

Finally, when the next instruction i for the enclave is to return some value, the shell

forwards it to Gmod
att , overwriting the sender-id of the outgoing message with its own

extended identity. The shell thus yields activation back to Gmod
att , which proceeds with

generating the attestation by calling S on the configuration of (eid||pid,“att”||idx).

4.3.2 Accessing a Clock

A natural extension of GPST
att , which the original paper uses to realise fair MPC [229,

Section 7.2], is to give the enclave access to a clock. The protocol is proven in a

synchronous setting, where each party is activated in a round-robin fashion and is

therefore aware of the round number. Enclaves are also equipped with round aware

capabilities, even if they are not activated every round.

We now show how to realise a new Gmod
att functionality that supports feature oracles

O = Ostd ∪{ReadRound, IncRound} by giving it access to a local functionality that

any protocol participant is allowed to interact with (both from within the enclave and

outwith). Whenever the enclave program tries to execute an instruction interacting

with the clock, the shell intervenes to forward the message to an ideal functionality,

and inserts the value back into the enclave virtual ITI through the subroutine output
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tape.

shO,A[prog]

The shell is defined for O=Ostd∪{ReadRound, IncRound} and A= {}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))
On message INSTALL from Gmod

att :

if virtual ITI (prog,(eid, idx)) does not exist, create

if ideal functionality (Fclock,(idx,⊥)) does not exist, create

send register to Fclock on behalf of (prog,(eid, idx))

On message input from Gmod
att :

begin executing input on (prog,(eid, idx))

for next instruction i on virtual ITI do

if i ∈Ostd then

allow (prog,(eid, idx)) to execute i

else if i= ReadRound then

send READ to (Fclock,(sid,⊥)) and receive v

append v to subroutine output tape for virtual ITI

else if i= IncRound then

send INC to (Fclock,(sid,⊥)) and receive v

append v to subroutine output tape for virtual ITI

else if i=(return v) then

return v with source (prog,(eid, idx))

The INSTALL subroutine of this shell installs the virtual ITI for a new enclave, and

ensures that an instance of the ideal functionality for the clock exists in this session

(with a standard PID ⊥). It then sends a registration message for the enclave to Fclock.

For enclave RESUME calls, the structure of the shell execution loop is the same as

in the shell from last section, with the instructions executed by the enclave for either

ReadRound, IncRound oracle calls forwarded to the ideal functionality, and its return

values returned to the enclave in the same way that we added the return value for an

attestation verification call in the previous section. We now describe the behaviour of

the clock functionality
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Functionality Fclock

The identity of the functionality is (sidF ,⊥)
On message REGISTER from a party P:

if t = {} then r← 0

if P.sid= sidF then

t[pid]←⊥

On message READ from a party P:

return r

On message INC from a party P:

if P.sid= sidF then t[P.pid]←⊤
if all values in t =⊤ then

r++

reset all values in t to ⊥
return r

Fclock provides a per-session round counter functionality. A round is increased

when all registered parties consent to. Internally, it stores the round counter as a mono-

tonically increasing integer r, and records whether a party has agreed to increase the

round via dictionary t, which records a boolean value for each party. Once a party

sends an INC message, they are not allowed to withdraw. After the last registered party

agrees to increase, r is incremented, and all values in t are set to false. A new part can

register at any point, and the value of the round counter is publicly accessible.

4.3.3 Interrupting computation

As a first attempt to show how to capture an attack oracle, we now model a new version

of Gmod
att where enclave programs are explicitly able to control which objects in their

memory can be saved to confidential persistent storage. An enclave is able to preserve

state across enclave executions by storing arbitrary bitstrings in an encrypted form,

and later fetch it back into memory when next resumed. Only the original enclave

itself is able to access any data it stored through the oracle call; the adversary only

learns the size of what was stored. In Intel SGX, these features are known as sealing

and unsealing.

As the enclave now interacts with the (untrusted) memory of the host, the adversary

will be notified of any storage or fetching attempt, and will have a chance to censor
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them. Given that the program integrity relies on these external oracle calls completing,

this is equivalent to the adversary aborting the enclave program. We therefore provide

the adversary with oracles A = {Abort,Continue}. The adversary can stop a memory

access oracle from completing, but can not erase or leak external memory that was

already successfully stored. This example oracle combination for Gmod
att is for illustra-

tive purposes; a more realistic oracle definition would let memory operations return to

the enclave with an error, allowing the program execution to continue, and allow the

adversary to permanently erase external memory.

We define the following shell:

shO,A[prog]

The shell is defined for O=Ostd∪{Store,Fetch} and A= {Abort,Continue}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))

State variables Description

mem← ε Persistent memory storage for the enclave

On message INSTALL from Gmod
att :

if virtual ITI (prog,(eid, idx)) does not exist, create

set halt←⊥

On message input from Gmod
att :

if halt=⊤ then abort

begin executing input on (prog,(eid, idx))

for next instruction i on virtual ITI do

if i ∈Ostd then

allow (prog,(eid, idx)) to execute i

else if i ∈ {Store(s),Fetch} then

if pid is corrupted then

halt←⊤
Send message (STORE, |s|)∨FETCH to A and await

if next message on the input tape is Abort from Gmod
att then

erase work tape contents of virtual ITI and return

else if next message on the input tape is Continue from Gmod
att then

halt←⊥
if i = Store(s) then
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mem← s

else if i = Fetch then

append mem to subroutine output tape for (prog,(eid, idx))

else if i= (return v) then

return v with source (shO,A[prog],(eid||pid,“att”||idx))

On message Abort from Gmod
att :

if halt=⊥ then

set halt←⊤
erase work tape contents of virtual ITI and return

On message (Continue, input) from Gmod
att :

if halt=⊥ then

parse (cmd,args)← input

return cmd(args)

Unlike the previous two shells, the execution loop of the above includes adversarial

interactions as part of the enclave operation. In particular, when an enclave run by

a corrupted party tries to interact with external memory by calling a Store or Fetch

instruction, the shell sets flag halt← ⊤, notifies the adversary, and relinquishes the

activation token. On its next activation, if it finds a message from the set A, it resumes

execution from where it last stopped. Otherwise, on any other input, it will abort (as

long as flag halt=⊤): storing and fetching are blocking.

The adversary A only learns that enclave eid run by party pid in session idx is

either trying to read from external storage, or that is writing some data and its size. A
replies by sending a message of type (RESUME,eid,ε,a ∈ A) from corrupted party pid

to Gmod
att . If a = Continue, the shell continues executing from where it left off, storing

bitstring s “ideally” (within its own internal variable mem). Otherwise, if a = Abort,

the enclave crashes, losing all memory stored within the virtual ITI’s work tape. An

Abort attack is not final: depending on the code of prog, the enclave can be resumed

later on, and recover some partial state from the last value successfully stored to mem,

if any. The A can call the attack oracles at any other point, without the enclave trying

to access memory (i.e. when halt=⊥); on an Abort call, the shell erases the enclave’s

working memory as well; on a Continue call, the shell simply executes the provided

argument as a resume operation.

Within the above definition, the shell variable halt keeps track on whether the ad-

versary has instructed the enclave to stop. On every call to Store or Fetch, the shell
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yields to the adversary, informing it on what type of instruction the enclave has re-

quested, including the length of the message that’s being stored (but not the contents,

memory storage is still confidential). These requests are blocking, so we do not allow

any other enclave operation to be executed until the adversary replies with a Abort or

Continue on the input tape. On an Abort message, the current resume execution is

halted, and any memory in the enclave’s worktape is erased. If the adversary instead

issues a Continue message (with no arguments), the enclave will resume from where

it stopped. If the adversary issues a Abort followed by a Continue, it should pass an

argument to an appropriate subroutine of the program, which might Fetch whatever

memory was last stored to let the program recover from a last known state.

4.3.4 Rollback Attacks

While the previous version of Gmod
att describes an adversary that is able to stop an en-

clave from storing any data to an external medium, the integrity and freshness of a

successfully stored message is always guaranteed by a successful Fetch. We now ex-

plore a model with a slightly stronger adversary, who controls the storage medium

and can overwrite the external memory location. Despite this, the enclave will not

accept arbitrary messages, but only ones that were produced during a legitimate Store

operation.

In Section 4.1, we introduced a new variant of Gatt that allows state continuity

attacks, Grollback
att . Recall that Grollback

att tracks enclave state updates in a tree-like struc-

ture, and allows the adversary to specify an index for an arbitrary node in the tree to

resume enclave execution from a specific snapshot. The tree allows the adversary to

fork the enclave at an arbitrary state and maintain multiple copies that can progress

independently.

As we no longer track the state of an enclave in a table T , an instance of Gmod
att

that supports Rollback or Fork instructions in A will require an alternative mechanism

to maintain the state. We implement this through an enclave shell that executes each

RESUME operation as a distinct virtual ITI. After the RESUME returns, the shell in-

stantiates a new ITI by copying the last active configuration, and notifies the adversary

of a unique pointer for that execution through an ITER message. When the adversary

calls for a Rollback or Forking attack with a specific pointer, the shell can run the pro-

vided input on with adequately stale state by activating the older ITI that the pointer

corresponds to.
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shO,A[prog]

The shell is defined for O=Ostd and A= {Rollback,Fork}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))
On message INSTALL from Gmod

att :

generate nonce c $←{0,1}λ

create virtual ITIs (prog,(eid|| /0, idx)),(prog,(eid||c, idx))
if pid is corrupted then send (ITER, /0,c) to A

On message input from Gmod
att :

execute input on virtual ITI (prog,(eid||c, idx))
generate nonce c′ $←{0,1}λ

copy working tape of (prog,(eid||c, idx)) into new virtual ITI (prog,(eid||c′, idx))
if pid is corrupted then send (ITER,c,c′) to A

c← c′

On message (ROLLBACK,(i, input)) from Gmod
att :

execute (out,(FORK,c, i, i′))← (FORK, i, input)

c← i′

return (out,(ROLLBACK, i, i′))

On message (FORK,(i, input)) from Gmod
att :

if virtual ITI (prog,(eid||i, idx)) exists then

out← ε

if input ̸= ε then

execute input on (prog,(eid||i, idx)), read subroutine output tape into out

generate nonce i′ $←{0,1}λ

copy work tape of (prog,(eid||i, idx)) to (prog,(eid||i′, idx))
return (out,(FORK,c, i, i′))

The structure of each subroutine’s extended identity involves appending a unique pointer

nonce to the enclave id (the initial state is denoted by special pointer /0). Variable c

holds the pointer to the latest snapshot of the enclave accessible by a honest RESUME

command. After each honest execution, the enclave creates a new UC subroutine by

generating a new id and copies the execution tape of the subroutine c points to into this

new copy, which is where the new instructions will be executed. The adversary always

learn the pointer generated for each iteration. If the adversary conducts a Rollback (by
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sending message (RESUME,eid, input,Rollback) from corrupted party pid to Gmod
att ), c

is overwritten with the pointer for an ITI whose memory state is copied from the one

the adversary provided a pointer for. In a fork, c is not affected, but the adversary learn

of new pointer i′ it can access. In both cases, the shell returns to Gmod
att with the enclave

output (if the attack also contained an instruction to execute) and auxiliary information

on the new ITI pointer. Since the attack was successful, Gmod
att waits for the adver-

sary to issue a CONTINUE message to finalise the return value and produce attestation

(otherwise the RESUME call for Gmod
att never terminates).

It is clear from our formulation that a rollback is just a special case of a fork, where

one of the two fork branches is not used again (in fact, on any ROLLBACK message, the

shell executes the FORK subroutine with the appropriate parameters). Distinguishing

the two cases is primarily useful in the setting of a mobile adversary. While corrupted,

a party can always choose the index for an enclave copy it wants to execute through

the FORK command. When the party is no longer corrupted, however, the only copy

of the enclave that can be executed is the one at index c. The adversary can thus use

ROLLBACK to force the newly honest party to execute the enclave from an arbitrary

state, essentially erasing the access to any state that might have succeeded it.

4.3.5 Modelling side channels

As we have discussed in the Background chapter 2.2.4.1, some previous works in the

literature have extended the GPST
att model to capture additional types of side-channel

attacks. We now adapt those extensions into Gmod
att shells.

Transparent enclaves Tramer et al. [276] provides a (local) UC functionality for

attested execution with no confidentiality guarantees, later extended in [229, Section 8]

to the global setting. Enclaves in this Transparent Enclave setting suffer from leakage

of all internal memory, except for the master signing key for attestation. This allows

integrating an enclave with such a leakage in protocols that only require the integrity

provided by enclaves. The modeling of transparent enclave is a simple extension over

that of GPST
att : the output of each resume call is followed by the leakage of the random

bits sampled by the enclave program. Knowing the inputs, randomness and the code

of the program is sufficient to reconstruct its operation and internal memory for any

randomised program, whereas deterministic programs are inherently transparent by

default, since the adversary knows the code of the enclave when they install it.
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In the language of Gmod
att , we state that for any attested functionality with RandomSample∈

O (and therefore any adversary where Ostd ⊂O), we can realise a transparent version

by including TransparentLeak in the adversarial oracles A =. We recover the mod-

elling from [276] and [229, Section 8.1] by letting the shell leak produce the entirety

of the virtual ITI random tape to the adversary after each execution. On installation,

enclaves start in the default non-transparent state, but once the adversary issuses the

TransparentLeak attack, all further values of the tape are leaked.

shO,A[prog]

The shell is defined for O=Ostd and A= {TransparentLeak}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))
On message INSTALL from Gmod

att :

if virtual ITI (prog,(eid, idx)) does not exist, create

transparent←⊥

On message input from Gmod
att :

begin executing input on (prog,(eid, idx))

for next instruction i on virtual ITI do

if i ∈Ostd then

allow (prog,(eid, idx)) to execute i

else if i=(return v) then

if transparent=⊤∧pid is corrupted then

send (LEAK, random tape of (prog,(eid, idx))) to A

return v with source (shO,A[prog],(eid||pid,“att”||idx))

On message (TRANSPARENTLEAK, input) from Gmod
att :

set transparent←⊤
if input ̸= ε then

parse (cmd,args)← input, return cmd(args)

else

return (ε, random tape of (prog,(eid, idx)))

A stronger type of leakage would leak the entirety of the virtual ITI’s work tape.

This would allow the adversary to recover any shared secret that predate the corruption

attack. This can be implemented by simply appending the work tape to the LEAK

message, or allow the adversary to apply standard UC passive corruption to the virtual
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ITI.

Almost-transparent and Semi-honest enclaves Dörre, Mechler, and Müller-Quade

[122] introduce two relaxations over the Gatt functionality that aim to capture a mid-

dle ground between the side-channel free GPST
att and transparent enclaves. Their models

provides enclaves with access (in our language) to feature oracles for secure key ex-

change and symmetric encryption.

We now provide an implementation for a shell that implement these cryptographic

functions by outsourcing them to local functionality Fcrypto as defined by Küsters and

Rausch [172].

shO,A[prog]

The shell is defined for O=Ostd∪{KeyExchange,SKEGen,SKEEnc,SKEDec,ReleaseKey}
and A= {TransparentLeak,Halt}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))

State variables Description

E ←{} Stores Group elements received by other enclaves

On message INSTALL from Gmod
att :

if virtual ITI (prog,(eid, idx)) does not exist, create

if ideal functionality (Fcrypto,(idx,⊥)) does not exist, create

send GETDHGROUP to Fcrypto and receive (DHGROUP,G,n,g)

On message input from Gmod
att :

if halt=⊤ then abort

begin executing input on (prog,(eid, idx))

for next instruction i on virtual ITI do

if i ∈Ostd then

allow (prog,(eid, idx)) to execute i

else if i= (KeyExchange,pid′,eid′) then

set halt←⊤
send GENEXP to Fcrypto and receive (EXPOPOINTER, ptre,ge)

if pid is corrupted then

query A with (KEYEXTO,pid′,eid′) and receive the reply continue

if E [pid′,eid′] =⊥ then
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// no stored keyshare for eid′, we are the initiatior

send (KEYEX,ge) to (shO,A[prog],(eid
′||pid′,“att”||idx)) and await

while next message on the input tape is not (KEYEX,pid′,eid′,h) do ignore

send (BLOCKGROUPELEMENT,h) to Fcrypto and receive OK

else

// eid′ was the key exchange initiatior, we already have h

h← E [pid′,eid′]

send (GENDHKEY, ptre,h) to Fcrypto and receive (POINTER, ptrdhk)

send (DERIVE, ptrdhk,unauth-key) to Fcrypto and receive (POINTER, ptrsk)

set halt←⊥
append ptrsk to subroutine output tape for virtual ITI (prog,(eid, idx))

else if i= SKEGen then

send (NEW,unauth-key) to Fcrypto and receive (POINTER, ptr)

append ptr to subroutine output tape for virtual ITI (prog,(eid, idx))

else if i= (SKEEnc, ptr,m) then

send (ENC, ptr,m) to Fcrypto and receive (CIPHERTEXT,hdl)

append hdl to subroutine output tape for virtual ITI (prog,(eid, idx))

else if i= (SKEDec,hdl,ct) then

send (DEC, ptr,ct) to Fcrypto and receive (PLAINTEXT,m)

append m to subroutine output tape for virtual ITI (prog,(eid, idx))

else if i= (ReleaseKey, ptr) then

send (RETRIEVE, ptr) to Fcrypto and receive (KEY,k)

append k to subroutine output tape for virtual ITI (prog,(eid, idx))

else if i=(return v) then

return v with source (shO,A[prog],(eid||pid,“att”||idx))

On message HALT from Gmod
att :

set halt←⊤
return

On message (KEYEX,h) from (shO,A[prog],(eid
′||pid′,“att”||idx)):

if halt=⊥ then

// we are not waiting for key exchange to complete;

// eid′ is the initiator

send (BLOCKGROUPELEMENT,h) to Fcrypto and receive OK

E [pid′,eid′]← h

// if the enclave is halted, eid is the initiator; on message KEYEX,

we exit the loop to complete the key exchange
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Most of the oracle calls in the shell are simply forwarded from the enclave to the

ideal functionality. KeyExchange is more interesting, as it is our first oracle call that

involves direct communication between two enclaves. We implement a “synchronous”

key exchange, in that we expect both enclaves to call the respective KeyExchange

oracle to establish a channel. We do not provide a mechanism for enclaves to discover

enclave IDs, and assume that they are provided by one of the other protocol inputs.

The first enclave to call the oracle will stop accepting any further activations until

the key exchange protocol completes (we refer to this enclave as the initiator). If the

other enclave’s shell receives a KEYEX message before its enclave has reached the

KeyExchange call, it will store the received share dictionary E to be retrieved at a later

point. Once both parties have communicated their shares to each other, the shared key

is computed by the Fcrypto functionality. Rather than returning it directly to the two

enclaves, our shell uses it to derive a new symmetric key, which is what is obtained

by both parties as the return value of KeyExchange (this step is necessary because

Fcrypto does not allow using keys of type dh-key for symmetric operations). If either

party running the enclave is corrupted, the adversary can learn that the key exchange

is taking place and issue a HALT message. Additionally, the adversary might learn any

other information leaked by F and its leakage functions.

The addition of these oracles does not provide the enclave with meaningful new

capabilities on its own, since an enclave can implement these operations as part of a li-

brary with access to randomness and attestation verification. However, it becomes sig-

nificant once it is combined with the TransparentLeak attack: by executing the secure

operations “ideally ” through oracles, the randomness needed to compute them is not

leaked as part of the transparent attack. Dörre, Mechler, and Müller-Quade [122] define

an enclave with access to both {KeyExchange,SKEGen,SKEEnc,SKEDec,ReleaseKey}∈
O and TransparentLeak∈A to be a almost-transparent enclave, and show that it is pos-

sible to realise one-sided PSI between two parties running almost-transparent enclaves

even if one of the parties is corrupted. Constructing a shell that realises the almost-

transparent enclave can be achieved through a combination of the previous two shells,

with the TransparentLeak additionally leaking the state of the work tape of the program

before the command was executed, and the return value of all secure operation oracles.

Leaking these values is required in the

There are some minor differences between our model and theirs: in their version

of almost-transparent enclaves, once the initiatior issues a KEYEXCHANGE command,

the receiving enclave is immediately notified and provided the symmetric key. There-
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fore, the initiator program needs to be run first (a natural constraint in their protocol).

An additional difference from their model is our use of the idealised Fcrypto for all op-

erations, rather than using a mix of ideal key exchange and concrete symmetric opera-

tions in their model. Therefore, we have to do an additional step to derive a symmetric

key, rather than using the shared DH key directly.

The second relaxation, semi-honest enclaves, captures an adversarial manufacturer

who is able to adaptively break into enclaves and extract historical transaction data.

Note that in this setting, the party running the enclave does not need to be corrupted

for the leakage to occur i.e. the adversary can cause leakage for any enclave run by a

honest party. Despite the extreme vulnerability of this type of enclave to an adversar-

ial manufacturer, it is still useful to construct some classes of private set intersection

(distinct from the ones in the previous setting).

The shell for a Semi-honest enclave is defined as follows

shO,A[prog]

The shell is defined for O=Ostd and A= {CompleteLeak}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))
On message INSTALL from Gmod

att :

if virtual ITI (prog,(eid, idx)) does not exist, create

rec← []

On message (RESUME, input) from Gmod
att :

begin executing input on (prog,(eid, idx))

for next instruction i on virtual ITI do

if i ∈Ostd then

allow (prog,(eid, idx)) to execute i

else if i=(return v) then

rec← rec ∥ (input,args,virtual ITI work tape)

return v with source (shO,A[prog],(eid||pid,“att”||idx))

On message COMPLETELEAK from A:

return rec

The definition of the shell is quite simple, as it merely records the output of each

resume execution and returns it to the adversary when it issues the CompleteLeak

command. The message is sent directly to the shell rather than through a corrupted
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resume call to represent that it doesn’t have to be issued by the calling party.

4.3.6 Shared Registry

We now give a shell to implement a single-writer multi-reader registry functionality

for any subset of enclaves. The registry contains a linearisable list of values that any

enclave in the set can read, but only one enclave can write into (in this case, the first

enclave to complete a write). We give the adversary the ability to temporarily block

or permanently censor corrupted parties, such that they can not access the registry

for reading. If the number of censored replicas is greater than a certain quorum Q (a

percentage of the registered parties) the registry is no longer able to guarantee termi-

nation of read/write operation, and will produce an error instead. If the writing enclave

is censored, all subsequent write calls will fail but read calls from other enclaves can

continue. The registry can be thought of as a shared single-writer ledger whose storage

is distributed between enclaves, and is synchronised through a consensus mechanism;

if less than Q of the total enclaves return a value, there are not enough live enclaves to

establish consensus and thus the protocol terminates.

We define the following shell, where the adversarial oracle CensorQ is parametrised

by Q.

shO,A[prog]

The shell is defined for O=Ostd∪{Read,Write} and A= {Block,CensorQ}
The extended identity of the shell is defined as (shO,A[prog],(eid||pid,“att”||idx))
On message INSTALL from Gmod

att :

j←⊥
if virtual ITI (prog,(eid, idx)) does not exist, create

if ideal functionality (RegCoord[Q],(⊥, idx)) does not exist, create

On message input from Gmod
att :

begin executing input on (prog,(eid, idx))

for next instruction i on virtual ITI do

if i ∈Ostd then

allow (prog,(eid, idx)) to execute i

else if i= {Read,(Write,v)} then

if j =⊥ then
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send Join to RegCoord[Q] on behalf of (prog,(eid, idx)); j←⊤

send i to RegCoord[Q] through (prog,(eid, idx)) and receive v

append v to subroutine output tape of virtual ITI

else if i ∈(return v) then

return v with source (shO,A[prog],(eid||pid,“att”||idx))

On message (CENSOR,ε) from Gmod
att :

send (CENSOR,pid) to RegCoord[Q]

Functionality RegCoord[Q]

State variables Description

P← [] List of enclaves participating in the registry

C← [] List of censored enclaves

V ← [] List of registry values over time

w←⊥ identity of writer enclave

On message JOIN from (prog,(eid, idx)):

P← P∪ (prog,(eid, idx))
send (JOIN,(prog,(eid, idx))) to A

On message (cmd,v) from (prog,(eid, idx)):

if eid is running on a corrupted party then

query A with (READ,(prog,(eid, idx))) and receive the reply Block,b

if b ̸=⊤∧ |C||P| < Q then

if cmd=WRITE then

if w =⊥ then w← P

if w ̸= P∨P ∈C then return Fail

V ←V ∥ v

send (CMD,V,(prog,(eid, idx))) to A return V

elsereturn Fail

On message HEALTHCHECK from (prog,(eid, idx)):

return |P|, |C|

On message (CENSOR,(prog,(eid, idx))) from Gmod
att :

if eid is running on a corrupted enclave then

C←C ∥ (prog,(eid, idx))
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return

The above functionality allows any enclave shell to join the protocol as a registry party.

The first shell who writes to the registry is locked in as w, the writer. Thereafter, only

w can issue a new WRITE, which appends the value to the end of the registry, and all

other registered parties receive the entirety of the registry on every READ2 On any read

and write, a corrupted party will query the adversary on whether they are allowed to

proceed. The adversary can also permanently block an enclave by issuing a Censor

message. If too many parties have been censored (i.e. the ratio between the number of

censored parties and total registered parties is greater than Q), it is impossible for the

registry to guarantee that the registry value is still safe, and the functionality fails.

We assume the functionality has access to some directory ITI that records whether

enclaves are run by corrupted parties.

4.4 Relationships between Gmod
att variants

Having defined a variety of different Gmod
att functionalities with different sets O,A, we

are now interested in exploring how they relate to each other. It is clear that all the

shells described in the previous sections are a modelling tool, rather than a real im-

plementation for that interface. As a downstream protocol designer, this level of ab-

straction is sufficient to detail the ideal behaviour of the oracles they require for their

enclaves. To show that our model is realistic, however, we need to show that it is

realisable in one way.

As we discussed in Section 2.2, there are a large number of TEE designs and en-

hancements that provide different features, as well as numerous attacks against real

world implementations. Formalising what oracles are realised by a specific TEE im-

plementation is a non-trivial task, and once a set is finalised, the discovery of new at-

tack oracles might invalidate the security of any proofs using it as a hybrid (or at least

making the protocol vulnerable “in the real world”). Rather than taking this bottom-up

approach, we propose to go the other direction: showing that strong TEE setups, which

we know are not possible to realise with our current implementations (despite their us-

age in security proofs), can be gradually realised through a less powerful abstraction.

Our intuition is that, given two versions of Gmod
att which sign over the same measure-

ment functions, a “weaker” setup (Gatt) that has either fewer features or more attacks

2The functionality could be made more efficient by keeping track of what values have been read by
each group member, and only downloading the difference on a read.
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can UC-emulate the stronger one (G′att). If there is a “wrapper” protocol around Gatt

that for all enclave programs running on it can emulate the missing feature oracle,

or mitigate the additional adversarial oracle, the combination of the wrapper protocol

with the Gatt setup is at least as strong as G′att.

This section sketches how to design such a protocol to show the UC-emulation

between any two Gatt,G′att setups. Our treatment aims to be generic and provide a

universal compiler protocol, but we are aware that our design will not work for all

combinations of oracles running arbitrary programs. Our protocols and proofs should

be seen as templates to be adapted to the specific setups under consideration.

4.4.1 Adding a Feature oracle

To fully capture the modular power of our new formalisation, we show how to add

a new feature to a TEE instance, increasing the size of its feature oracle set. We

want to show that a TEE that has native access to that feature (through an oracle)

is indistinguishable from one that does not and has to implement it through runtime

code. Depending on its complexity, a feature can be implemented by just running some

additional computation within the enclave itself, by calling out to a library running

within an assisting enclave on the same party, or by conducting an interactive protocol

with multiple remote parties. We can represent these type of runtime behaviour as a

UC protocol that provides the same interface and guarantees of the missing feature

oracle.

More formally, we consider two instantiations of attested execution Gatt and G′att
(both modular), with feature oracles O,O′, respectively, where O⊂O′. Let I =O′\O.

The adversarial oracles A and attestation signature function S are shared between Gatt

and G′att. We now define a new “wrapper” protocol W which uses Gatt as a subroutine

and UC-realises G′att by implementing the interface for I in the real world.

W takes the same parameters as Gmod
att , and in addition the two functions mapL,mapR,

and the code of enclave program WI[·]. Function mapR takes the set of Gmod
att -enabled

parties, and chooses a subset to run assisting enclaves that any party can rely on (the

parties chosen by mapR do not have to be honest). mapL returns a set of local assist-

ing enclave programs the party should install locally, and a next message function for

WI[·].
WI[prog,nextmsg] is a “wrapper” enclave that instruments prog with additional

code such that, when prog attempts to use interface I, the next message function begins
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executing I as a protocol. Function nextmsg observes the current state of the enclave,

and chooses the command required to start the I-protocol execution. The command

issued by nextmsg will either be run as a local subroutine in the enclave wrapper code

itself, by another enclave installed locally (as instructed by mapL), or by a remote party

(in an enclave created through mapR). nextmsg is aware of the details of each assisting

enclave, such as their enclave ID or what party they are installed on.

If the next command issued by nextmsg is received by the assisting enclave it is

destined for (a corrupted party could diverge from the protocol and choose not to de-

liver the message), it executes the requested subroutine, produces its own next com-

mand, and forwards it to the party that should execute it. Eventually, the original

WI[prog,nextmsg] will receive a final message, and return the result value of I to the

prog oracle call. Essentially, the program that implements I is compiled into a multi-

party computation between the enclaves. We do not require a full-fledged secure MPC

protocol to execute I, however, due to the integrity guarantees of attestation, as the

only possible malicious behaviour of a participant is dropping messages (known as

the omission corruption adversarial model in MPC [64]). Within the execution of the

next message functions, enclaves are able to construct an authenticated or secure chan-

nel through attestation. We do not give a description of how this is done, and refer

the reader back to the construction of the secure channel in the Steel protocol in Sec-

tion 3.3.

The W protocol (Figure 4.4) proceeds as follows. During initialisation, it calls

the mapR function to produce a list of supporting enclaves ER
i run by a subset of reg

parties, initialises Gmod
att with the appropriate parameters, and requests each selected

party to install the wrapped ER
i . It then returns a public list of all assisting parties and

the associated enclave IDs.

On a call from pidi to install some program progi, if progi does not include any call

to I, it installs a wrapped version with dummy next message function ε. Otherwise, it

runs mapL() to produce a list of local assisting enclave programs to be installed by the

same party, and a next message function nextmsg /0. The party installs all such enclaves,

runs their initialisation subroutine, and creates a new message function nextmsg that

is a wrapper around nextmsg /0 aware of the assisting parties enclave IDs. mapL makes

nextmsg and all EL
i programs aware of the enclave IDs for any ER parties, and assists

WI[·] in generating the appropriate next commands to implement I along with the

assisting protocols.

On a resume call from its local party pidi to execute command cmd on arguments
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Protocol W [λ,Gmod
att , reg,O,A,S,mapR,mapL,WI[·]]

On message INITIALISE from a party P:
[(ER

1 ,pid1), . . . ,(ER
n ,pidm)]←mapR(reg)

send INITIALISE to Gmod
att [λ, reg,O,A,S]

let ĒR← []
for i ∈ {0, . . . ,n} do

send (INSTALLREQUEST,ER
i ) to pidi and receive eidi

ĒR← ĒR||pidi,eidi

return ĒR

On message GETPK from a party P:
send GETPK to Gmod

att and receive vk
return vk

On message (VERIFY,σ,m) from a party P:
if m is an attestation measurement that contains a commitment to some program with
code ER

i or EL
i then

return ⊥
else

send (VERIFY,σ,m) to Gmod
att and receive v and return v

On message (INSTALL,prog) from a party P where P.pid ∈ reg:
if I ∈ prog then

(nextmsg /0,(E
L
1 , . . . ,E

L
n))←mapL(ĒR)

let ĒL← []
for i ∈ {1, . . . ,n} do

send (INSTALL,EL
i ) to Gmod

att and receive eidi
send (RESUME,eidi, INIT) to Gatt

ĒL← ĒL||eidi
let nextmsg(x)← nextmsg /0(x, Ē

L)
send (INSTALL,WI[prog,nextmsg]) to Gatt and receive eidprog
send (RESUME,eidprog , INIT) to Gatt

else
send (INSTALL,sid,WI[prog,ε]) to Gatt and receive eidprog

return eidprog

On message (RESUME,eid, input) from a party P with pidi:
send (RESUME,eid, input) to Gmod

att and receive out,σ
while out= (RESUMEREQUEST,pid,eid′,v) do

if pid= pidi then
(out,σ′)← RESUME(eid′,(v,σ,⊤)))

else
send (RESUMEREQUEST,eid′,(v,σ)) to pid and await
if next message m,σ′ on input tape does not start with RESUMEREQUEST then

ignore
else out← m,sσ′

return out,s
On message (INSTALLREQUEST,prog) from a party P ∈ reg:

send (INSTALL,prog) to Gmod
att and receive eid

return eid

On message (RESUMEREQUEST,eid, input) from a party P ∈ reg:
send (RESUME,eid, input)) to Gmod

att and receive output,σ
return (output,σ)

Figure 4.4: The wrapper protocol
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args for enclave WI[progi,nextmsg], the enclave wrapper (described in Figure 4.5) be-

gins executing the code of progi with those inputs. Once the program makes a subrou-

tine call to I, the wrapper stops the internal program execution and calls the nextmsg

function, which returns the PID, Enclave ID and some command that needs to be ex-

ecuted to begin computing the value for the subroutine call. The enclave returns these

to its local party with the special keyword RESUMEREQUEST, and waits for a next

activation. When the party receives this return value, it knows that cmd(args) did not

terminate. Instead, it passes the RESUMEREQUEST and associated command on to the

appropriate party, or, if the destination PID is pidi, activates one of its local enclaves,

including WI[progi,nextmsg] itself. When resuming an enclave as part of the I compu-

tation, the local party can set input flag⊤ as part of the RESUME arguments to indicate

that the command being executed is not part of the normal progi code. pidi waits to

receive the next message, and once again passes it on to one of its local enclaves, and

forwards the resulting RESUMEREQUEST. Eventually, when the PID and EID returned

by nextmsg are ⊥, the computation of I has terminated, and the wrapper can pass back

v as its return value to the internal execution of progi. Whenever the enclave returns

with an intermediate message, the latest attestation signature should always be bun-

dled with the next message input for the receiver party. Attestation validation logic

is defined in the code of W for all appropriate messages, and interacts directly with

the Gmod
att verification request through a call to the AttestVerify protocol. When a user

requests verification of one of these intermediate attestation signatures from outside

one of the participating enclaves, the protocol always returns ⊥.

It is convenient for our purposes to model the code of WI[·] using a UC shell,

since its behaviour is similar to some of the shells we constructed in the previous

section. The two types of shell are complementary: UC structured protocols support

nesting shells, so we instantiate the WI[·] as a subroutine of shO,A[·]. Formally, the

program installed by W is WI[p, f ], but using the shell means that we don’t have to

define its full source code (or more likely, a compiler program that interleaves calls to

next function f throughout p). Additionally, the oracle sets provided by the combined

interface O ∥ I is intuitively equivalent to the oracle sets of G′att (see Figure 4.6 for a

graphical representation).

We now provide the following conjecture:

Conjecture 4.1. Let Gatt=Gmod
att [λ, reg,O,A,S],G′att=Gmod

att [λ, reg,O′,A,S],O′\O=

I. For any enclave wrapper WI[·] which, combined with functions mapL,mapR imple-

ments the difference between the shells shO,A[·] and shO′,A[·], it is possible to show
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Shell WI[prog,nextmsg] (Template)

The identity of the shell is (eid, idx)
The parent shell extended identity is (shO,A[WI[prog]],(eid||pid,“att”||idx))

On message (cmd,args,r) from (eid||pid,“att”||idx):
if virtual ITI (prog,(eid||“wrapped”, idx)) does not exist then create
if r =⊥ then

let input← (cmd,args)
begin executing input on (prog,(eid||“wrapped”, idx))
for next instruction i on virtual ITI do

if i ̸∈ I then
// Execution of i is delegated to the higher order shell
allow (prog,(eid||“wrapped”, idx)) to execute i

else
(pidj,eidj,v)← nextmsg(tapes of virtual ITI)
while (pid j,eidj) ̸= (⊥,⊥) do

send (RESUMEREQUEST,(pidj,eidj,v)) to (eid||pid,“att”||idx) and await
if next message on the input tape is (cmd′,args′,⊤) then

execute (pidj,eidj,v)← cmd′(args′,⊤)
else

ignore
append v to subroutine output tape for (prog,(eid||“wrapped”, idx))
// The loop terminates when nextmsg() returns (⊥,⊥,v)

else
// r = ⊤ as the result of an I computation, execute code in

subroutine cmd
execute cmd(args)
return nextmsg(tapes of virtual ITI)

Figure 4.5: Template for the internal wrapper shell. A complete definition of the shell
requires an implementation for any additional CMD that might be requested by the next
message functions
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Figure 4.6: Protocol W can add a shell to GO,AS
att enclaves to UC-emulate the missing

feature oracles I from GO′,AS
att

that protocol W [λ, reg,O,A,S,mapR,mapL,WI[·]], which instantiates Gatt as a sub-

routine, UC-emulates G′att

Without a precise definition of protocol W and the interface it is implementing,

or the preexisting interfaces for O and A, it is difficult to provide evidence that W in

the presence of Gatt UC-emulates G′att. We now provide some guidelines on how a

simulator for such theorems of special instances of this conjecture might be structured;

however, depending on the nature of the programs installed, the wrapper code, or the

shared oracles between the two setups, a different simulation strategy might be needed.

For example, if the adversary is able to directly observe the source code of an enclave

while it is executing, the simulation will not work. It might be possible for some of this

cases where the below simulation strategy does not work to add some backdoor code in

the WI[·] description to give the simulator some additional powers (see the Steel proof

in Section 3.4 or Pass, Shi, and Tramèr [230]).

We describe simulation for the three possible protocol topologies implementing I:

1. We begin our simulation sketch for the case of a wrapper protocol W where

neither mapR or mapL functions returns any additional enclave i.e. the wrap-
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per WI[·] can implement I without relying on any external assistance. During

the global functionality initalisation phase, the simulator observes the signa-

ture algorithm s chosen by the environment through the dummy adversary, and

provides G′att with a new algorithm s′ which applies s over the transformation

F(meas). F takes a measurement string that contains an identifier for program

prog, and replaces it with an identifier for WI[prog,nextmsg] (for an appropri-

ate value of nextmsg), as discussed in Section 4.2. Attestations produced by an

enclave prog in the G′att-hybrid world are thus indistinguishable from those pro-

duced by the equivalent wrapped enclave in the Gatt-hybrid world. Therefore,

the simulator can simply block any installations of an un-wrapped program that

requires access to I with MissingInstructionError, and replace installations of

wrapped programs with the unwrapped version on the G′att functionality. Honest

parties in protocol W do not install any unwrapped program, and no external

session will have direct access to Gatt since it is installed as a W subroutine. If

the (local) adversary attempts to install an unwrapped program to Gatt directly,

the simulator can run the program “in its head” without going through G′att, and

use the algorithm s provided by the dummy adversary for the environment for

producing plausible attestation signatures for the unwrapped code. The signa-

tures will not verify through any calls to the ideal verification subroutine, as they

wouldn’t for honest parties of W , but they will look legitimate to environment

through running the local verification algorithm that corresponds to s.

2. When mapR does not install any assisting enclaves, but mapL does, the simulator

instantiates the same signature scheme as in the previous case (by adding the F

transformation).

When it receives a request to install any enclave with code EL
i , it generates a

plausible enclave ID and returns it, without actually installing the enclave in

Gmod
att . While we do not explicitly define an enclave ID generation algorithm

for Gmod
att , we assume that the probability of sampling the same ID is negligible.

The simulator then ensures that, before a corrupted party requests to install some

enclave WI[prog,nextmsg], it has requested to install all necessary EL
i enclaves

produced by mapL(), and has given a value of nextmsg with the appropriate

enclave IDs, otherwise WI[prog,nextmsg] would not be able to verify them for

attestation.

Whenever the adversary resumes the program enclave, the simulator runs the in-
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put in its head to determine whether it contains any calls to I. If it does, it calls

the next message function nextmsg on the partial result, and uses the signing key

generated during initialisation by the adversary to produce signing algorithm s,

and uses it to sign a RESUMEREQUEST message. If the adversary then tries

to resume the receiver enclave, the simulator executes the related command in

its head and returns the next RESUMEREQUEST message. Any attempts from

the adversary to verify one of the intermediate attestation messages directly is

dropped, since the protocol does not let parties verify these attestations either

(they are however likely to be verified by the code of the wrapper enclave as

part of its next command execution). Once it is satisfied that the adversary has

provided the appropriate sequence of messages to fully compute I, it sends the

initial original input to the unwrapped program in G′att. If the feature shell trig-

gers any adversarial interaction, it uses the values provided by the adversary

through RESUMEREQUEST messages to maintain a consistent state with the W
interactions. Any interactions with the adversary through attacks or feature re-

quests unrelated to I are captured by the ideal shell run by Gatt, so no additional

simulation is required for them.

3. Finally, in the case of the mapR function requesting multiple enclaves across a

variety of parties, the simulator initialises Gmod
att with the same signature algo-

rithm as before. It then calls the mapR function and sends the resulting resume

requests to corrupted parties, but installs the assisting enclaves for honest parties

on a machine it controls, and produces the appropriate list of assisting enclave

IDs, ĒR.

Like in the previous case, on an enclave installation request, it installs a non-

wrapped copy of any enclaves requested by corrupted parties, as long as they

have installed all the related local assisting enclaves. Simulation proceeds as

in the previous case, except that the simulator also ensures that any remote

RESUMEREQUEST message is delivered (i.e. the appropriate messages on the

network are not censored). When a next command is sent to a remote assisting

party run by some honest user, the simulator does not pass it on, and runs the

command on its local copy to find out the next message location, using its copy

of the s algorithm to sign plausible attestations (including faking the party ID if

using non-anonymous attestation) Finally, if the computation succeeds, it calls

the unwrapped enclave in G′att as before. Any attempts by a corrupted party to
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send a RESUMEREQUEST to honest enclaves outside of the correct sequence of

events is dropped.

General replacement of global setups As we discussed in Section 2.1.2.2, it is not

possible to prove, in the general case, that a protocol UC-emulates a global subrou-

tine. A well formed replacement statement needs to account for the context emulation

statement the global subroutine is being invoked in.

Intuitively, since the adversarial oracle sets for the Gatt,G′att functionalities consid-

ered are the same, replacing the global functionality G′att with a Gatt-hybrid protocol

W to provide the missing feature interface I should generally be safe, as a higher level

simulator that interacts with TEEs as part of a protocol subroutine will have the same

interface for attacks. However, given the general nature of our conjecture, we can not

conclusively say that the implementation of I provided by W communicates with the

adversary in the same manner as the ideal implementation of I provided by the G′att
shell. Indeed, the role of the W to G′att simulator is to reconciling any such difference.

We therefore have to analyse two distinctive cases.

Theorem 4.1. Let Gatt,G′att,W be any Gmod
att setups and a wrapper protocol such that

Conjecture 4.1 holds, and additionally G′att UC-emulates W . For any protocol ρ in the

presence of G′att that UC-emulates some F in the presence of G′att, ρ in the presence of

W UC-emulates F in the presence of W .

The statement follows from the composition theorem of [33, Theorem 3.3]. Show-

ing that G′att UC-emulates W (i.e. in conjunction with 4.1, W and G′att are UC-

equivalent) involves constructing a new simulator S ′ such that EXECG′att,A ,Z ≈EXECW ,S ′,Z .

During the setup phase, S ′ instantiates Gmod
att with the inverse transformation for

attestation signatures described in the proof of 4.1 i.e. for any attestation measurement

that includes an identifier for some program with code WI[prog, ·] and replaces it with

an identifier for prog. Thereafter, the behaviour of S ′ consists of simply forwarding

any input from the environment to the protocol W (including allowable attacks in A),

and after a RESUME, execute any associated RESUMEREQUEST for corrupted parties

without modifying their inputs or showing the result to the environment, except for any

adversarial leakage consistent with what would be produced by the shell implementa-

tion for G′att. When W returns the output of the RESUME and associated attestation

message, S ′ only forwards this result and its attestation (with the wrapper code re-

moved by the F−1



138 Chapter 4. AGATE

If the shell implementing feature I in the G′att world includes direct communica-

tion with the adversary that is not fully equivalent by the messages produced by the

supporting enclaves in W , the simulation will fail. For such protocols we need to con-

sider a weaker setting, where we fix the feature simulator within the ideal subroutine

available to the higher level protocols.

Theorem 4.2. Let Gatt,G′att,W be any Gmod
att setups and a wrapper protocol such that

Conjecture 4.1 holds for some simulator S. Let GS
att be the combination of G′att and S;

for any protocol ρ in the presence of GS
att that UC-emulates some F in the presence of

GS
att, ρ in the presence of W UC-emulates F in the presence of W .

The statement above directly follows from [85, Lemma 1].

4.4.2 Removing Adversarial Interfaces

Just like the above protocol allows increasing the size of a TEE feature oracle interface

set, we now formulate a corresponding protocol to reduce an enclave’s attack surface.

For many types of enclave attacks, there are cryptographic or distributed protocols

that can provide some degree of protection. We can use these protocols to construct

a new functionality with a smaller adversarial interface set. A core difference from

the oracle interface implementation of the previous section, however, is that, rather

than interrupting the execution of a normal enclave program for a specific instruction

to run a protocol between supplementary enclaves, it is necessary to run the defensive

protocol from the start of the execution. Since the adversary could mount the attack

during or between arbitrary resume operations, the protocol might need to execute cer-

tain instructions before or independently from an attack, such as establishing a secure

channel with an assisting enclave.

As in the previous section, given two (modular) implementations of attested execu-

tions Gatt,G′att with adversarial interfaces A,A′ respectively, and shared O and S, we

define a wrapper protocol W (for non-empty A =A\A′) that uses Gatt as a subroutine

and UC-realises G′att.

Protocol W is defined in the same way as W . As we remarked above, the only

difference between the two protocols is that WA[prog,nextmsg] never executes the in-

ternal protocol prog directly. Instead, the nextmsg() function now takes the code prog

as an additional argument, and compiles it into the code for local enclaves EL
i∈{1,...,n}.

When the party installs all enclaves WA[prog,nextmsg],EL
1 . . . ,E

R
n}, it immediately re-

sumes them with INIT, which allows the enclaves to conduce any necessary setup op-



4.4. Relationships between Gmod
att variants 139

erations. Thereafter, on a resume call to prog, WA[prog,nextmsg] always begins its

execution by running nextmsg first. When nextmsg returns (⊥,⊥,v), this indicates

that the resume call has completed, and the enclave returns v to the party.

The protocol W only protects against the attacks in A; all other attacks in A′ are

still allowable in both worlds.

We omit the formal description or the protocol or wrapper enclave due to their sim-

ilarity to the one in the previous section. Likewise, we omit a further summary of the

simulation techniques for showing that W UC-emulates G′att, in favour of adopting a

concrete example in Section 4.5. However, we do state the following for completeness:

Conjecture 4.2. Let Gatt = Gmod
att [λ, reg,O,A,S],G′att = [λ, reg,O,A′,S],A \A′ = A.

For any enclave wrapper WA[·] which, combined with functions mapL,mapR imple-

ments the difference between the shells shO,A[·],shO,A′[·], it is possible to show that

protocol W [λ, reg,O,A,S,mapR,mapL,WA[·]], which instantiates Gatt as a subrou-

tine, UC-emulates G′att

Theorem 4.3. Let Gatt,G′att,W be any Gmod
att setups and a wrapper protocol such that

Conjecture 4.1 holds. For any protocol ρ in the presence of G′att that UC-emulates F
in the presence of G′att, ρ in the presence of W UC-emulates F in the presence of W .

We claim the latter theorem holds because the adversarial interface is smaller in

the ideal world, so there is no additional attack that was used by the ρ to F simulator

which is no longer available with the introduction of the protocol. This is the inverse

scenario of which Badertscher, Hesse, and Zikas [33] are concerned, where the real

world global protocol includes fewer attacks that the ideal world global functionality.

Therefore, the theorem holds due to the composition theorem of [33, Theorem 3.10],

as the ρ to F simulator is W \A′-agnostic (i.e. the simulator does not interact with W
except for using adversarial interfaces in A′ - that is, everything except for A). This is

true because A is not a valid adversarial interface in G′att. Therefore, if simulator of the

pre-condition is able to simulate the protocol without using A, the same simulator will

equally apply to the statement where G′att has been replaced with W .

4.4.3 Interactions Between Features and Attacks

When defining the transformation between two versions of Gatt, it is important to think

carefully about specifying the necessary requirements. Just like the defence protocol

to remove some adversarial attack might require specific feature oracles (therefore the
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addition of attack A requires a lower bound for O), there will be classes of attacks that

can break security of most protocols without access to some adequate feature oracles

to construct a protection mechanism (setting an upper bound to what attacks can be

introduced in A).

Additionally, in some cases the addition of a new feature will also imply the ex-

pansion of adversarial attacks. Consider the addition of explicit storage and fetching

capabilities described in Section 4.3.3. By adding those external oracle calls, we are

also forced to provide an adversarial oracle to abort the program. While it would be

possible to consider a version of Gmod
att where only the new interfaces were added, it

would be hard to justify as the natural implementation of that feature requires handing

off control of the memory to untrusted permanent storage. Of course, a novel TEE

architecture could allow a more secure way to implement storage and fetching without

exposing the enclaves to adversarial crashes. Our goal for Gmod
att is not to be prescriptive

with what kind of (ideal) TEE objects should be used as assumptions in cryptographic

protocols; however we recommend caution when designing a new variant of Gmod
att with

complex or unrealistic features.

Another illustrative example could be the introduction of cloning [175]. This fea-

ture allows efficient enclave creation, as it instantiates a second copy of an enclave

including its memory (equivalent to normal process forking in operating systems). De-

pending on the implementation, the addition of this feature might however give the

adversary additional power, as it could now be able to swap memory regions for each

of the two versions of the enclave interactively, effectively executing a forking attack

not tied to rollback (where the remote party is not able to distinguish which of the two

enclaves it is communicating with, and the adversary can interactively swap and cen-

sor messages between the two). While this specific attack can be easily mitigated with

another wrapper protocol that augments sealing with freshness values, it will require

an additional explicit transformation and corresponding level of shells.

Our theorems in this section only show a single step Gmod
att oracle change (through

feature addition and attack removal). Unlike the oracle shells in Section 4.3, which

have to be manually integrated to provide the appropriate functionality for the set of

oracles chosen (although in many cases the shell changes are trivial), it should be easy

for some oracle combinations to repeatedly apply Conjectures 4.1 and 4.2 without

modifying the protocols.

We note that in some cases the oracle transformation protocols given above might

not be simulatable for all possible enclave programs. In those cases, it is still possible
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for a program designed to run in G′att to run in the Gatt-hybrid world where the oracle

feature is not available, or be secure even if Gatt allows an attack not in G′att. Such

substitution require to be proven on a case by case basis, but the observation is con-

sistent with the state of the art of TEE program design, where mitigations for certain

attacks exist only if the program is “well-written” (e.g. memory safe or using oblivious

primitives) or does not use certain functions (see [251, Table 1]).

4.5 Implementing Rollback protection from Registers

We now give an example of one the equivalences described in the previous section,

with the aim of addressing the rollback attacks described at the start of the chapter.

Our construction relies on the well-known observation in the literature that a mono-

tonic counter or a trusted storage services can be used to prevent rollback attacks (see

Section 2.2.3.1). Although the protocol equally applies to the related class of forking

attacks, we do not explicitly address them in this section for simplicity.

To construct the protocol, we require our target enclave to support the trusted

Store,Fetch interfaces we described in Section 4.3.3, as well as an oracle Meas, which

returns a digest (such as a hash) over the state of the enclave’s virtual ITI. We construct

a simple protocol W as described in Section 4.4, that removes the Rollback interface

from an ideal Gmod
att where A includes Abort.

The intuition for the protocol is that the shell can store the digest of the latest copy

of the internal enclave measurement in persistent storage at the end of every RESUME.

When enclave execution starts, the shell can fetch the stored measurement digest and

compare it with the measurement for the current state as returned by Meas. If the

two states match, the enclave can be safely executed; otherwise, the state must have

been tampered with, and the function aborts. We denote this sequence of operations

as wrapper-subroutine MEASEXEC. If every resume operation uses MEASEXEC, the

adversary is not able to execute a rollback attack, but will effectively abort the enclave.

Defining a rollback protection protocol by relying on the usage of safe memory might

seem like a circular definition - if the enclave has access to trustworthy Store,Fetch

oracles, why not just store the entirety of memory using this interface? We discuss

more realistic protection mechanisms in Chapter 6 as material for future work, but we

believe that the current setting is still valuable, as it minimises usage of the size of data

stored in the trusted memory (as well as providing an easy to explain protocol to prove

an instance of Conjecture 4.2).
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To provide the formal definition for the protocol, we define functions mapR() and

mapL() that produce no supporting enclaves. Function mapL() defines a next message

function nextmsgmeas(), which determines how to execute the wrapped program. When

the enclave state is at the beginning of executing a RESUME instruction, nextmsgmeas

runs the MEASEXEC subroutine of WA[·]. Subroutine MEASEXEC checks that the

current measurement of the enclave’s state corresponds to the last state saved in stor-

age, before executing the input subroutine, and updating the storage with the resulting

new state. If MEASEXEC aborts, nextmsgmeas returns (⊥,⊥,“abort”), while if it ter-

minates successfully with value v, it returns ⊥,⊥,v; in both cases, the enclave returns

the values to its caller.

The code of the shell that implements the WA[·] program is presented in Fig-

ure 4.7. The shell runs with ID (eid||c, idx) as a subroutine to the top level shell

(eid||pid,“att”||idx), which implements the full oracle set, including the attack Rollback∈
A. Whenever the inner shell calls to a feature oracle, its execution is paused by

(eid||pid,“att”||idx), which computes the oracle value and writes it on the subroutine

output tape. Shell (eid||c, idx) is oblivious to this mechanism, and can simply call the

oracles as if they were local subroutines. The identity of the shell includes counter c be-

cause the shell is one of the copies created by the shell (shO,A[prog],(eid||pid,“att”||idx))
from Section 4.3.4 to enable rollbacks. All shell copies created for new RESUME it-

erations share the same storage interface for Store,Fetch. (eid||c, idx) instantiates a

subroutine (prog,(eid||c||“wrapped”, idx)) to execute the code of prog. For most of

the execution of prog, it allows the internal subroutine to run. Since the execution of

(eid||c, idx) is also running within an execution loop of (eid||pid,“att”||idx), whenever

(prog,(eid||c||“wrapped”, idx)) calls an oracle, (eid||pid,“att”||idx) will pause the exe-

cution of both subroutines to provide a return value. Likewise, if the adversary issues

an Abort attack, (eid||pid,“att”||idx) will handle it directly.

Our protocol provides an inc-then-store counter (see Section 2.2.3.1) - despite the

name, performing the store operation corresponds to a counter increase, since the local

storage is reliable, and we do it before returning (storing) to the untrusted party.

To show that Conjecture 4.2 holds for the above protocol, we need to show that

the protocol UC-emulates a G′att functionality without Rollback. To prove this, we

construct a simulator that turns any attempt at a Rollback into an Abort. Our simulator

roughly follows the sketch outlined in the first case of the proof strategy for Conjec-

ture 4.1, although we modify it appropriately for the adversarial case.

Assume the simulator has access to the same parameters as W . The simulation
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Shell WA[prog,nextmsgmeas]

The identity of the shell is (eid ∥ c, idx)
The parent shell extended identity is (shO,A[WI[prog]],(eid||pid,“att”||idx))

On message INIT from (eid||pid,“att”||idx):
if Fetch() ̸= ε then

return ABORT

install virtual ITI (prog,(eid||c||“wrapped”, idx))
let m←Meas()
Store(m)

On message input from (eid||pid,“att”||idx):
while ⊤ do

out← nextmsgmeas(tapes of virtual ITI)
if out= (pid,eid,(MEASEXEC, input)) then

run MEASEXEC(input)
else if out= (⊥,⊥,v)∧ v ̸= “abort ′′ then

return v
else

erase the virtual ITI work tape
abort

On message (MEASEXEC, input):
let m← Fetch()
let m′←Meas()
if m ̸= m′ then abort
begin executing input on (prog,(eid||c||“wrapped”, idx))
for next instruction i on virtual ITI do

if i= (return v) then
b←Write(Meas())
assert b = OK

else allow (prog,(eid||c||“wrapped”, idx)) to execute i

Figure 4.7: The WA[·] enclave shell installed by protocol W for rollback iteration c of
enclave eid installed by party pid for session idx
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translates all requests to install a wrapped enclave from corrupted parties into requests

to install the unwrapped enclave in G′att; any attempt to install an unwrapped enclave

will be simulated “in its head”. Thereafter, whenever the party resumes one of the

wrapped enclaves, the simulator fakes an access to the Fetch oracle, to reproduce the

behaviour of the MEASEXEC subroutine in wrapper WA[·] to check that the enclave

was not previously rolled back. If the check succeeds, the enclave begins executing the

program ideally through running its non-wrapped version through the G′att function-

ality. During its execution, the shell (shO,A′[progw],(eid||pid,“att”||idx)) might send

messages on the backdoor tape related to some attacks in A′ unrelated to rollback

(therefore present in both real and ideal world). In that case, the simulator forwards it

to the adversary and returns its response back to the shell without modification. After

the execution of the enclave program has terminated, the simulator fakes a call to the

Store oracle, with the length of the hash function used for mesuring enclave states (m)

as its leakage.

If at any point during the simulation the adversary aborts a simulated oracle call,

or if the simulator has recorded in dictionary P that the adversary has issued a rollback

attack against that enclave, it will issue an abort message through the adversarial inter-

face of G′att, and halt its own execution. Otherwise, if all the checks succeed, it returns

the output value and attestation signatures produced by G′att. Additionally, the simula-

tor produces an ITER message to signal that the resume execution has been successful,

and the creation of a new copy for the ITI state (as if the enclave was running on Gatt).

Attestation verification requests are forwarded to G′att if they are for the wrapped ver-

sion of an enclave (where it will succeed only if the unwrapped version of the same

enclave issued that message, before being transformed by F). Any request to verify a

message where the attestation contains the unwrapped code (which is what is actually

running on G′att) is rejected.

Calls to install, resume, or verify the attestation of any unwrapped enclaves are not

allowed by the protocol, but a corrupted party might try to get around this by directly

writing to the tapes of real world Gatt subroutine - this is allowed by the identity bound.

In that case, the simulator lets the message through to its local simulated Gatt subrou-

tine, which can produce a convincing attestation signature for any message by using the

original s algorithm. To denote this, we adopt the convention of forwarding adversarial

messages for unwrapped enclaves to a “fake” copy of the hybrid functionality GF
att. It

is possible to think of GF
att as simply shorthand for the book keeping operations inlined

by the simulator’s code, similar to the roles of the dictionary G in the Steel simulator of
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Section 3.4, Alternatively, it is possible to see GF
att as a bona-fide instance of Gmod

att run

by the simulator as a local subroutine, and therefore granting no access to machines in

other sessions. Adopting this view is only possible in our modular setting: while the

Steel simulator, in the presence of GPST
att , was required to keep a separate record of all

messages signed by adversarial enclaves, this is the default for Gmod
att , and therefore we

do not require keeping track of any additional operations. GF
att is taken to be initialised

with the same arguments as the real world Gatt emulated by the protocol, such that any

attempts to access an attack in A is reproduced by its (simulated) shells.

The pseudocode for the shell described above is as follows:

Simulator S

F(a, f ) is the function that transforms an attestation measurement a so that it replaces the

code of an enclave program p with code WA[p, f ]. M is the standard uniform length for

the output of Meas() oracle calls

State variables Description

P← [] List of state pointers for rollback protected enclaves

On message INITIALISE from G′att:

send INITIALISE to A through Gatt and receive pk,s

nextmsgmeas←mapL(ĒR)

let s′(x)← s(F(x,nextmsgmeas)

send (pk,s′)) to G′att on behalf of A
send INITIALISE to GF

att through Z and receive INITIALISE

send Σ to GF
att on behalf of A

On message (INSTALL, idx,prog) from corrupted party P:

if prog = WA[progw,nextmsgmeas] then

send (INSTALL,progw) to G′att through P and receive eid

P[P, idx,eid,progw]← ( /0, /0)

else

send (INSTALL,prog) to GF
att through P and receive eid

return eid

On message (RESUME,eid,(i ∥ input),Rollback) from corrupted party P:

if P[P, ·,eid, ·] = (c,clatest) then

P[P, ·,eid, ·]← (i,clatest)

if input ̸= ε then
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run out,σ←RESUME(eid, input,ε),

else

send (ITER,c, i) to A on behalf of (shO,A[prog],(eid||pid,“att”||idx))

else send (RESUME,eid,(i ∥ input),Rollback) to GF
att on behalf of P

On message (RESUME,eid, ·,Abort) from corrupted party P:

if (·, ·) ∈ P[P, ·,eid, ·] then send (RESUME,eid,ε,Abort) to G′att on behalf of P

else send (RESUME,eid,ε,Abort) to GF
att on behalf of P

On message (RESUME,eid, input,a) from corrupted party P:

if (c,clatest) ∈ P[P, ·,eid,progw] then

assert a = ε∨a ∈ A′

let shEID← (shO,A′ [progw],(eid||pid,“att”||idx))
send FETCH to A through shEID and receive b

if b ̸= Continue∨ c ̸= clatest then send (RESUME,eid,ε,Abort) to G′att and return

send (RESUME,eid, input,a) to G′att on behalf of P and

while receive (msg,args) from shEID do

send (msg,args) to A through shEID and receive RESPONSE

send RESPONSE to shEID on behalf of A
if RESPONSE= Abort then return

receive out,σ from G′att
send (STORE,1M) to A through shEID and receive b′

if b′ ̸= Continue then send (RESUME,eid,ε,Abort) to G′att and return

generate nonce c′ $←{0,1}λ,P[P, ·,eid,progw]← (c′,c′)

send (ITER,c,c′) to A on behalf of shEID

else

send (RESUME,eid, input,ε) to GF
att and receive out,σ

return out,σ

On message (VERIFY,σ,m) from corrupted party P:

if m is a measurement for an enclave with program WA[progw,nextmsgmeas] then

send (VERIFY,σ,F(m,nextmsgmeas)) to G′att and receive v

else if m is a measurement for a program prog with enclave ID eid installed by some

party P′ in session idx, and P[P′, idx,eid,prog ̸=⊥] then

return ⊥
else

send (VERIFY,σ,m)) to GF
att and receive v

return v
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For any protocol that adopts the standard identity bound, preventing the environ-

ment from sending messages on behalf of corrupted parties outside of the test session,

the environment can not distinguish the real or ideal world, due to the simulator con-

structing a perfect transcript for the execution of W with the attestation signatures in

the ideal world verifying for a real world WA[·] program.

Consider the case where the adversary does not conduct a rollback attack. For

every RESUME operation from the corrupted party, the simulator activates the adver-

sary with message FETCH, allowing it to interrupt the computation. If this happens,

the simulator mounts the equivalent ABORT attack on G′att. If FETCH is allowed, the

measurement stored will be the same as from the previous execution, and therefore the

simulator runs the program in G′att. The behaviour of this execution is equivalent to the

real world setup, since the shells of Gatt and G′att implement the same (non-rollback)

oracles, and the simulator lets through any such adversarial access. Finally, the ad-

versary receives a final STORE for a message of the same length as a MEAS value.

Since the storage oracle does not leak the message contents but only their size, the ad-

versary can not distinguish it from a state storage as executed during the MEASEXEC

subroutine. If it chooses to abort, the real world wrapper would never terminate, so the

simulator does the same for the ideal world enclave (by issuing its own ABORT), other-

wise it returns the (ideally computed) value. The distribution of the return value for the

enclave as executed in Gatt and G′att is equivalent (given they have the same feature or-

acles implementation), and the modified signature scheme attests to code WA[prog, f ]

in both worlds, thanks to the transformation F .

For the case of an adversary who, after some sequence of successful resumes, is-

sues a rollback attack to an earlier state. The code of subroutine WA[·] does not allow

executing any further RESUME, since the assertion that the measurement stored is equal

to the current one will fail with non-negligible probability (as long as the measurement

computed by oracle MEAS is collision-resistant, and the code of the enclave program

iterates through a sufficiently diverse state distribution3). The simulator perfectly re-

produces this behaviour, by issuing an ABORT to the ideal enclave, after having issued

the preceding FETCH.

3If the enclave is running a program with a very limited set of states, such as a small finite state
automaton, it is possible to artificially expand the state space by augmenting the program with a mono-
tonically increasing counter for each resume. This will ensure that every measurement is distinct.
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To conclude this work, we provide an example of a privacy-preserving protocol

that is made practically efficient by using Trusted Execution Environments, and can be

proved secure under Universal Composability by re-using existing secure protocols as

its component.

GlassVault is an extension of regular privacy-preserving decentralised contact trac-

ing that allows infected users to share sensitive (non-contact tracing) data for analysis.

As a generic platform, GlassVault is (data) type agnostic and supports any secure

computation authorised by users. It offers accountability and privacy, by allowing

users to consensually choose what data to share, and only allows analysts to execute

computations authorised by sufficiently many users, while learning nothing beside the

result about the input of users.1

In this work, we formally define GlassVault in the Universal Composability (UC)

framework and prove its security. We consider a setting where both analysts and users

may collude with each other to learn additional information about the data beyond

what the analysts are authorised to compute. Furthermore, we allow the adversary to

adaptively corrupt users, but assume a static set of corrupted analysts.

For privacy, it is sufficient that an upper bound for the user corruption threshold is

publicly known to users when they encrypt their data. Here we also implicitly assume

that data often looses its value and sensitivity over time. Thus, users might accept that

the threshold could be reached far in the future as more users join the protocol and be-

gin approving more functions. To have an efficient protocol that can offer all the above

features, we construct GlassVault by carefully combining pre-existing exposure noti-

fication algorithms with an extension of the generalised functional encryption scheme

proposed in Chapter 3. We extend their construction into a novel protocol called Dou-

bleSteel, which allows a functional key to be generated in a distributed fashion while

letting legitimate users freely join key authorisation and generation committees. We

believe DoubleSteel to be of independent interest for other data analytic applications.

While GlassVault is constructed by using an exposure notification protocol that re-

flects the implementation of popular decentralised contact tracing schemes deployed

by many countries during the COVID-19 pandemic, its ability to allow analysts to

compute a function on user-uploaded data reflects the ability of a health authority to

analyse the graph of user contacts in a centralised contact tracing scheme. We claim

1Authorisation here does not necessarily need to be taken literally, the average user might just ap-
prove requests by certain analysts by default without a user-interface prompt, but the fact that users are
in the loop nevertheless is crucial for accountability as it facilitates involvement of privacy advocacy
organisations.
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that GlassVault resolves the inherent conflict between these paradigms, by implement-

ing the contact graph as a GlassVault function. Additionally, as an additional applica-

tion of GlassVault, we show how it can be utilised to help the analyst identify infection

clusters through heatmaps.

Chapter Organisation Section 5.1 presents an overview of related work and pro-

vides key concepts we rely on. Section5.2 presents a formal definition of our new

functional encryption variant, called DD-FESR, along with DoubleSteel, a protocol

for realising it using trusted hardware. Section5.3 presents the formal definition in

the form of an ideal functionality, the protocol, and the security proof for GlassVault.

Section ?? addresses how to bridge the divide between decentralised and decentralised

contact tracing through GlassVault. Section5.5 gives the infection heatmaps example.

5.1 An Overview of Privacy-Preserving Contact Tracing

systems

In this section, we present an overview of privacy-preserving solutions for contact

tracing and exposure notification.

5.1.1 Centralised vs Decentralised Contact Tracing.

Within the first few months of the COVID-19 pandemic, a large number of theoret-

ical (e.g., [30, 236, 279, 83]) and practical (e.g., [13, 151, 12, 3, 15]) automated

contact tracing solutions were quickly developed by governments, industry, and aca-

demic communities. Most designs concentrated around two architectures, so-called

centralised and decentralised, where the main difference between the two is that cen-

tralised systems keep a central record of the information of all users, regardless of

infection status.

More technically, the major difference between the two architectures rests on key

generation and exposure notification. In a centralised system, the keys are generated

by a trusted health authority and distributed to contact tracing users, while also keeping

a central user record. In decentralised systems, the keys are generated locally by each

user. In both types, information is exchanged in a peer-to-peer fashion, commonly

through Bluetooth Low Energy (BLE) messages broadcast by each user’s phone. Once
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someone is notified of an infection, they upload some data to the health authority

server. While in centralised systems the uploaded data usually corresponds to the BLE

broadcast observed by infected user’s devices, in a decentralised system it will gen-

erally be the messages they sent. Since the (centralised) authority keeps a record for

each party in the system, it can identify their BLE broadcast of contacts and notify

them about exposure. In this setting, the authority is able to construct users’ contact

graphs, which allows it to further analyse users’ movements and interactions, at the

cost of privacy.

On the other hand, the users of a decentralised system download the list of broad-

casts from exposed users and compare it with their own local lists. This guarantees

additional privacy compared to centralised systems (although several attacks are still

possible, see [198]), while also preventing the health authority from running large

scale analysis on infection data which would be possible in a centralised system. De-

spite this, the adoption of decentralised systems such as DP-3T [280] has been more

widespread due to technical restrictions and political decisions forced by smartphone

manufacturers [24]. There has been much debate on how any effort to the adoption of

a more private and featureful contact tracing scheme could be limited by these gate-

keepers [287, 30, 288].

5.1.2 Automated Data Analysis.

A few attempts have been made to develop automated systems which can analyse pop-

ulation behaviour to better understand the spread of the virus. The solution proposed

in Bruni et al. [66] displays the development of virus hotspots, as a heatmap. In this

system, there are two main players; namely, the health authority and a mobile phone

provider, each of which has a set of data that they have independently collected from

their users. Their goal is to find (only) the heatmap in a privacy-preserving man-

ner, i.e., without revealing their input in plaintext to their counterpart. To achieve its

goal, the system uses (computationally expensive) homomorphic encryption, differen-

tial privacy, and a matrix representation of inputs. In this system, (i) the two parties

run the computation on users’ data, without having their fine-grained consent and (ii)

each party’s input has to be encoded in a specific way, i.e., it must be encrypted and

represented as a matrix.

The protocols in [191, 55, 149] allow users to provide their encoded data to a server

for a specific analysis. Specifically, Lueks et al. [191] design a privacy-preserving
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Presence-Tracing system which notifies people who were in the same venue as an in-

fected individual. The proposed solution mainly uses identity-based encryption, a hash

function, and authenticated encryption to achieve its goal and encode users’ input data.

Biasse et al. [55] design a privacy-preserving scheme to anonymously collect informa-

tion about a social graph of users. In this solution, a central server can construct an

anonymous graph of interactions between users which would let the server understand

the progression of the virus among users. This solution is based on zero-knowledge

proofs, digital signatures, and RSA-based accumulators. Günther et al. [149] propose

a privacy-preserving scheme between multiple non-colluding servers to help epidemi-

ologists simulate and predict future developments of the virus. This scheme relies

on heavy machinery such as oblivious shuffling, anonymous credentials, and generic

multi-party computation.

In all of the above solutions, the parties need to encode their inputs in a certain

way to support the specific computation that is executed on their inputs, and thus do

not support generality. Additionally, not all systems allow the users to opt-out of the

computation, and are therefore not fully accountable to them.

5.1.3 Formalising Exposure Notification in the UC framework.

Canetti et al. [84] introduce a comprehensive approach to formalise the Exposure No-

tification primitive via the UC framework, showing how a protocol similar to DP-3T

realises their ideal functionality. Their UC formulation is designed to capture a wide

range of Exposure Notification settings. The modelling relies on a variety of func-

tionalities that abstract phenomena such as physical reality events and Bluetooth com-

munications. While the above work is unique in formalising Exposure notification, a

UC formalisation of the related problem of proximity testing has been given in [275],

based on the reduction to Private Equality Testing in [214].

We now provide a full specification of the Exposure Notification functionality, in-

cluding some additionally prerequisites.

5.1.3.1 The repository functionality R EP

We relax the functionality R EP from Section 2.3.4 by allowing any party to read/write,

as long as the read/write request refers to some specified session. Namely, the func-

tionality keeps a table M of the all the messages submitted by writing requests. On

message (WRITE,x) from W , it generates a unique handle h, and records x in M[h]. On
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message (READ,h) from a party P ∈ R, it returns M[h] to P.

5.1.3.2 The time functionality T

The time functionality T of [84] can be used as a clock within a UC protocol. It ini-

tializes a counter t as 0. On message INCREMENT from the environment, it increments

t by 1. On message TIME from a party P , it sends t to P.

5.1.3.3 The physical reality functionality R

Functionality R introduced in [84], represents the “physical reality” of each participant

to a protocol, meaning the historical record of all physical facts (e.g., location, motion,

visible surroundings) involving the participants.

R is parameterized by a validation predicate V for checking that the records provided

by the environment are sensible, and a set F of ideal functionalities that have full

access to the records obtained by R. The functionality only considers records that have

a specific format and include the party identity, time, and the types of measurement

(e.g., location, altitude, temperature, distance of the party from each other party, health

status) that evaluate the physical reality for the said party. It initializes a list R of all

submitted records that are in correct format and operates as follows:

• On message (P,v) from the environment, where P is a party’s identity and v is

a record in correct format, it appends (P,v) to R. Then, it sends TIME to T (the

time functionality presented in 5.1.3.2) and obtains t. It checks that t matches

the time entry in v and that V (R) holds. If any check fails, then it halts.

• On message (MYCURRENTMEAS,P,L,e) that comes from either party P or a

functionality in F (otherwise, it returns an error), where L is a list of fields that

refer to the correct record format and e is an error function:

1. It finds the latest entry v in the sub-list of entries in R whose first element

is P.

2. It sets vL as the record v restricted to the fields in L.

3. It computes e(vL), i.e., the result of applying the error function e to vL.

4. It returns e(vL).

• On message (ALLMEAS,e) from a functionality in F, it applies e to each record

in R and obtains R̃. It returns R̃.
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5.1.3.4 The trusted bulletin board functionality FTBB

The functionality FTBB, as presented in [84], maintains a state that is updated whenever

new data are uploaded (for infectious parties). It initializes a list C of records. On

message (ADD,c) from a party P, it checks with R whether P is infectious (formally,

FTBB sends a message (MYCURRENTMES,P, “health_status”, id) to R, where id is

the identity function). If this holds, then it appends c to C . On message RETRIEVE

from a party P, it returns C to P.

5.1.3.5 The exposure notification functionality FEN

The Exposure Notification functionality, also introduced in [84], builds on the previous

two functionalities to provide a mechanism for warning people who have been exposed

to infectious carriers of the virus. The description of the functionality is recapped

in section 5.3.1; we show the formal description for the purposes of comparing this

functionality with FEN+ .

Confirmation of test results when sharing exposure and re-registration into the sys-

tem for no longer infectious users is not captured by the functionality.

Functionality FEN[ρ,E,Φ,L ,P ]

State variables Description

SE List of users who have shared their exposure status

U List of active users

Ũ List of corrupted users

R̃ε Noisy record of physical reality

On message (SETUP,ε∗) from A:

assert ε∗ ∈ E; R̃ε← /0

On message ACTIVATEMOBILEUSER from U ∈ P :

U← U ∥ U

send (ACTIVATEMOBILEUSER,U) to A

On message SHAREEXPOSURE from U ∈ P :

send (ALLMEAS,ε∗) to R and receive R̃∗

R̃ε← R̃ε ∥ R̃∗

if R̃ε[U][INFECTED] =⊥ then

return error
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else

send TIME to T and receive t

SE← SE ∥ (U, t)

U← U\{U}
send (SHAREEXPOSURE,U) to A

On message EXPOSURECHECK from U ∈ P :

if U ∈ U then

send (ALLMEAS,ε∗) to R and receive R̃∗

R̃ε← R̃ε ∥ R̃∗

µ← R̃ε[U] ∥ R̃ε[SE]

return ρ(U,µ)

else return error

On message REMOVEMOBILEUSER from U ∈ P :

U← U\{U}

On message (CORRUPT,U) from A:

Ũ← Ũ ∥ U

On message (MYCURRENTMEAS,U,A,e) from A:

if U ∈ Ũ then

send (MYCURRENTMEAS,U,A,e) to R and receive ue
A

send (MYCURRENTMEAS,ue
A) to A

On message (FAKEREALITY,φ) from A:

if φ ∈Φ then

R̃ε← φ(R̃ε)

On message LEAK from A:

send (LEAK,L({R̃ε,U,SE})) to A

On message (ISCORRUPT,U) from Z:

return U
?
∈ Ũ

5.2 Dynamic and Decentralised FESR (DD-FESR) and

Steel (DoubleSteel)

In this section, we present the ideal functionality DD-FESR and the protocol that re-

alises it, DoubleSteel. As we stated earlier, they are built upon the original functionality

FESR and protocol Steel, respectively. In the formal descriptions, we will highlight the
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main changes that we have applied to the original scheme from Chapter 3 in yellow.

As the construction is of independent interest from the contact-tracing problem, we

refer to the various parties in the protocol with their generic roles of encryptors and de-

cryptors. In the next section, we will use DD-FESR as a subroutine, and define which

Exposure Notification parties fulfill each role. For conciseness, we omit any reference

to UC-specific machinery, such as session IDs, unless it is required to understand the

specifics of our protocol.

5.2.1 The Ideal Functionality DD-FESR

In this subsection, we extend the functional encryption scheme FESR into a new func-

tionality DD-FESR to capture two additional properties from the functional encryption

literature:

1. Decentralisation (introduced in [96]), which allows a set of encryptors to be in

control of functional key generation, rather than a single trusted authority.

2. Dynamic membership (introduced in [97]) allows any party from a known legit-

imate party set P to freely join sets A (encryptors) and/or B (decryptors) during

the execution of the protocol.

Functionality Overview. As in Chapter 3, our definition of DD-FESR builds on the

work of [202] in casting the Functional Encryption scheme as an access controlled

repository, where encryptors “upload” data and decryptors “download” it. In our vari-

ants, encryptors also vote on a “download policy” by deciding which decryptor is able

to access what function over the uploaded data.

The functionality DD-FESR registers parties from P as encryptors and/or decryp-

tors, when they provide DD-FESR with an according SETUP message.

The KEYGEN subroutine of the FESR scheme is replaced by a new subroutine

KEYSHAREGEN. Namely, any party A ∈ A informs DD-FESR that she allows a key

share for a decryptor B w.r.t. some function F. In turn, the functionality provides B

with a (KEYSHAREGEN,F,A,B) message.

Upon an encryption request of a message x under a decryption threshold k by any

registered party, the functionality selects a unique index h and records an associated

(x,k). Then, it responds to the party with (ENCRYPTED,h).

When a decryptor B requests a decryption w.r.t. an index h and a function F, then B

must have collected at least k shares for F before decryption is allowed. In particular,
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DD-FESR recovers the pair (x,k) associated with h and checks if it has issued at least

k (KEYSHAREGEN,F, ·,B) messages to B. If so, it chooses randomness r, and runs the

stateful computation of F on input x and randomness r, which results in the output y.

Then, it sends (DECRYPTED,y) to B.

The functionality is presented in detail below.

Functionality DD-FESR[F,P ]

The functionality is parameterised by the randomised function class F= {F | F : X ×S ×
R → Y × S}, over state space S and randomness space R , and by a set of (dummy)

parties P .

State variables Description

A← [] List of registered encryptors

B← [] List of registered decryptors

Â← [] List of corrupted encryptors

B̂← [] List of corrupted decryptors

F0 Leakage function returning message length

F+ F∪F0

setup[·]← false Table recording which parties were initialised.

M [·]←⊥ Table storing the plaintext for each message handler

P [·]← /0 Table of authorised functions’ states for all decryption parties

K S [·]← [] Table of key share generator for each (decryptor, function) pair

On message (SETUP,role) from P ∈ P :

assert setup[P] = false

send (SETUP, role,P) to A and receive OK

if P ∈ P \A∧ role= encryptor then A← A ∥ P

else if P ∈ P \B∧ role= decryptor then B← B ∥ P

else return

setup[P]← true

On message (KEYSHAREGEN,F,B) from A ∈ A:

if A ∈ Â then ▷ The adversary can only block key generation for corrupted parties

send (KEYSHAREQUERY,F,A,B) to A and receive OK

if
(
F ∈ F+∧ setup[A]∧ setup[B]

)
then

K S [B,F]←K S [B,F] ∥ A ▷ We store the identity of all parties in A who authorised F for B

send (KEYSHAREGEN,F,A,B) to B
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if B ∈ B̂∨A ∈ Â then send (KEYSHAREGEN,F,A,B) to A
else send (KEYSHAREGEN,⊥,A,B) to A

On message (ENCRYPT,x,k) from party P ∈ A∪B:

if
(
setup[P]∧x ∈ X∧k is an integer

)
then

generate nonce h
$←{0,1}λ

M [h]← (x,k)

send (ENCRYPTED,h) to P

else

send (ENCRYPTED,⊥) to P

On message (DECRYPT,F,h) from party B ∈ B:

(x,k)←M [h];y←⊥;

if F = F0 then

y← |x|
else if

(
(|K S [B,F]| ≥ k∧∀A ∈K S [B,F] : setup[A]∧∀A are distinct )∨(B ∈ B̂∧|Â| ≥ k)

)
then ▷ There are at least k functional key shares, all generated by correctly setup parties, OR B and at least k parties

in A are corrupted

s← P [B,F]

r $← R
(y,s′)← F(x,s; r)

P [B,F]← s′

return (DECRYPTED,y)

On message (CORRUPT,P) from A:

if P ∈ A∩B then

Â← Â ∥ P; B̂← B̂ ∥ P ▷ The functionality needs to keep track of corrupted parties in A to ensure

correctness

return {(B,F)|P ∈K S [B,F]} and K S [P, ·]

if P ∈ A\B then

Â← Â ∥ P

return {(B,F)|P ∈K S [B,F]}

if P ∈ B\A then

B̂← B̂ ∥ P

return K S [P, ·]
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5.2.2 The Protocol DoubleSteel

Now, we propose DoubleSteel, a new protocol that extends Steel to realise DD-FESR.

We briefly provide an overview of Steel and our new extension, before outlining the

formal protocol.

Overview of Steel. Steel uses a public key encryption scheme, where the master pub-

lic key is distributed to parties in set P , and the master secret key is securely stored in

an enclave running program progKME on trusted party C. The secret key is then pro-

visioned to enclaves running on parties as decryptors, only if they can prove through

remote attestation that they are running a copy of progDE. The functional key corre-

sponds to signatures over the representation of a function F and is generated by C’s

progKME enclave. If party B possesses any such key, its copy of progDE will distribute

the master secret key to a progFE[F] enclave, which can then decrypt any A’s encrypted

inputs x and will ensure that only value y of (y,s′)← F(x,s; r) is returned to B, with

the function states s and s′ protected by the enclave.

Overview of DoubleSteel. The protocol DoubleSteel has a few crucial differences with

respect to the original version as described. Party C, who is now untrusted, still runs

the public key encryption parameter generation within an enclave and distributes it to

a party A or B when they first join the protocol. Each party A also generates a digital

signature key pair locally and includes a key policy k along with their ciphertext. Note

that for simplicity our current version uses an integer k to associate with each message,

but it would be possible to use a public key policy as a threshold version of Multi-

Client Functional Encryption. Party A who wants to authorise party B to compute

a certain function will run KeyShareGen(F,B) to generate a key share, which requires

signing the representation of F with their local key, and send the signature to B. For B’s

progDEVK enclave to authorise the functional decryption of F, it first verifies that all key

shares provided by B for F are valid and each was provided by a unique encryptor party;

if all checks are passed, then it will distribute the master secret key to progFEVK[F],

along with the length of recorded key shares kF. progFEVK[F] will only proceed with

decryption if the number of key shares meets the encryptor’s key policy. Provisioning

of the secret key between C and B’s progDEVK enclave remains as in FESR.

The protocol DoubleSteel makes use of the global attestation functionality Gatt,

the certification functionality FCERT, the common reference string functionality CR S ,

the secure channel functionality SC S→R, and the repository functionality R EP that

are presented in Sections 2.2.4.1,2.3.7, 2.3.5, 2.3.6, and 5.1.3.1 respectively. The code
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of the enclave programs progKMEVK,progDEVK ,progFEVK[·] in DoubleSteel is hardcoded

with the value of the verification key VK returned by FCERT, and can be generated

during the protocol runtime.

Protocol DoubleSteel[F,PKE,Σ,N,λ,P ,C]

The protocol is parameterised by the class of functions F as defined in DD-FESR, the

public-key encryption scheme PKE denoted as the triple of algorithms PKE := (PGen,

Enc,Dec), the digital signature scheme Σ denoted as the triple of algorithms Σ := (Gen,

Sign,Vrfy), the non-interactive zero-knowledge protocol N that consists of prover P and

verifier V , and the security parameter λ. P is a set of legitimate parties of type A,B. C is

the identity of the Key Generation party.

State variables Description

K S [·]← /0 Table of function key shares for B

K [·]← /0 Table of functional enclave details for B

Key Generation Authority C:

On message (SETUP,role,P) from SC P→C:

if mpk=⊥ then

send GET to CR S and receive (CRS,crs)

send GETK to FCERT(P ) and receive VK

eidKME← Gatt.install(C.sid, progKMEVK)

(mpk,σKME)← Gatt.resume(eidKME,(init,crs,C.sid))

if P ∈ P ∧ role= encryptor then

send (SETUP,mpk,σKME,eidKME) to SCC→P

else if P ∈ P ∧ role= decryptor then

send (SETUP,mpk,σKME,eidKME) to SCC→P and receive (PROVISION,σDE,eidDE,pkKD)

(ctkey,σsk)← Gatt.resume(eidKME,(provision,(σDE,eidDE,pkKD,eidKME)))

send (PROVISION,ctkey,σsk) to SCC→P

Party P as encryptor:

On message (SETUP,encryptor) from Z:

assert mpk=⊥
send (SETUP,encryptor) to SC P→C and receive mpk,σKME,eidKME

send GETPK to Gatt and receive vkatt

send GETK to FCERT(P ) and receive VK
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assert Σ.Vrfy(vkatt,(sid,eidKME,progKMEVK ,mpk),σKME)

send GET to C R S and receive (CRS,crs)

(spk,ssk)← Σ.Gen(1λ)

send (SIGN,spk) to FCERT(P ) and receive cert

store mpk,crs,spk,ssk,cert

On message (KEYSHAREGEN,F,B) from Z:

σ← Σ.Sign(ssk,F,B)

send (KEYSHAREGEN,F,σ,spk,cert) to SC P→B

On message (ENCRYPT,m,k) from Z:

assert mpk ̸=⊥∧m ∈ X ∧ k is an integer ▷ Any party having mpk can encrypt

ct
r←− PKE.Enc(mpk,(m,k))

π← P ((mpk,ct),((m,k), r),crs);ctmsg← (ct,π)

send (WRITE,ctmsg) to R EP and receive h

return (ENCRYPTED,h)

Party P as decryptor:

On message (SETUP,decryptor) from Z:

assert mpk=⊥
send (SETUP,decryptor) to SC P→C and receive mpk,σKME,eidKME

K S = {},K = {}
send GETPK to Gatt and receive vkatt

send GETK to FCERT(P ) and receive VK

assert Σ.Vrfy(vkatt,(idx,eidKME,progKMEVK ,mpk),σKME)

store mpk;eidDE← Gatt.install(B.sid, progDEVK)

send GET to CR S and receive (CRS,crs)

((pkKD, ·, ·),σ)← Gatt.resume(eidDE,(init-setup,eidKME,σKME,crs,B.sid))

send (PROVISION,σ,eidDE,pkKD) to SC P→C and receive

(PROVISION,ctkey,σKME)

Gatt.resume(eidDE,(complete-setup,ctkey,σKME))

On message (KEYSHAREGEN,F,σ,spk,cert) from SCA→P:

K S [F]←K S [F] ∥ (σ,spk,cert)

On message (DECRYPT,F,h) from Z:

if K [F] =⊥ then

eidF← Gatt.install(B.sid, progFEVK[F])

(pkDF,σF)← Gatt.resume(eidF,(init,mpk,B.sid))

K [F]← (eidF,pkDF,σF)
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send (READ,h) to R EP and receive ctmsg

(eidF,pkDF,σF)←K [F]

((ctkey,kF,crs),σDE)←Gatt.resume(eidDE,(provision,K S [F],eidF,pkDF,σF,F,B.pid))

((computed,y), ·)← Gatt.resume(eidF,(run,σDE,eidDE,ctkey,

ctmsg,kF,crs,⊥))
return (DECRYPTED,y)

progKMEVK

on input init

(pk,sk)← PKE.PGen(1λ)

return pk

on input (provision,(σDE,eidDE,pkKD,eidKME)):

vkatt← Gatt.vkatt; fetch crs, idx,sk

assert Σ.Vrfy(vkatt,(idx,eidDE,progDEVK ,(pkKD,eidKME,crs),σDE)

ctkey← PKE.Enc(pkKD,sk)

return ctkey

progDEVK

on input (init-setup,eidKME,crs, idx):

assert pkKD ̸=⊥
(pkKD,skKD)← PKE.Gen(1λ)

store skKD,eidKME,crs, idx

return pkKD,eidKME,crs

on input (complete-setup,ctkey,σKME):

vkatt← Gatt.vk

fetch eidKME,skKD, idx

m← (idx,eidKME,progKMEVK ,ctkey)

assert Σ.Vrfy(vkatt,m,σKME)

sk← PKE.Dec(skKD,ctkey)

store sk,vkatt

on input (provision,K S F,eidF,pkDF,σF,F,pid):

fetch eidKME,vkatt,sk, idx,crs

m← (idx,eid,progFEVK[F],pkDF)

assert ∀(σspk,spk,cert) ∈K S F : (Σ.Vrfy(VK,spk,cert)∧
∧Σ.Vrfy(spk,(F,pid),σspk)∧∀spk are distinct) ∧Σ.Vrfy(vkatt,m,σF)

return PKE.Enc(pkDF,sk),|K S F|,crs
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progFEVK[F]

on input (init,mpk, idx):

assert pkDF =⊥
(pkDF,skDF) = PKE.Gen(1λ)

mem← /0;store skDF,mem,mpk, idx

return pkDF

on input (run,σDE,eidDE,ctkey,ctmsg,kF,crs,y′):

if y′ ̸=⊥
return (computed,y′)

vkatt← Gatt.vk;(ct,π)← ctmsg

fetch skDF,mem,mpk, idx

m← (idx,eidDE,progDEVK ,(ctkey,kF,crs))

assert Σ.Vrfy(vkatt,m,σDE)

sk= PKE.Dec(skDF,ctkey)

assert N.V ((mpk,ct),π,crs)

(x,k) = PKE.Dec(sk,ct)

assert kF ≥ k

(out,mem′) = F(x,mem)

store mem←mem′

return (computed,out)

5.2.3 Proof of security

We now formally state the security guarantees of DoubleSteel.

Theorem 5.1. For a class of functions F, CCA-secure encryption scheme PKE, EU-

CMA secure signature scheme Σ, and non-interactive zero-knowledge proof system N,

Protocol DoubleSteel[F,PKE,Σ,N,λ, P ,C] UC-realises ideal functionality DD-FESR[F,P ],

in the presence of global functionality Gatt.

Proof. We first construct a simulator, SDD-FESR. For simplicity of exposition, we use

the simulator SFESR from Section 3.4 as a subroutine to SDD-FESR. We instantiate SFESR

such that shared functionalities (e.g., the secure channels between multiple parties) are

implemented by SDD-FESR, so that it can intercept messages to the parties whose be-

haviour is simulating and act accordingly. SDD-FESR also acts as the ideal functionality

in the eyes of the SFESR simulator.

By updating the set B (initialised as empty), SFESR keeps record of the parties that

are set up as decryptors. We assume that at least one party in the set B∪{C} is cor-
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rupted at the start of the protocol. We choose this party, GG, to install all Gatt enclaves

for all participants in the protocol, be they honest or corrupted. Due to the property of

anonymous attestation guaranteed by Gatt, the simulator can install all programs on the

same machine to produce the attested trace of the real-world protocol, as long as it does

not allow GG to execute other parties’ enclaves on its own initiative (we use the table

G from simulator SFESR to keep track of which party installed each enclave). Simi-

lar to the original simulator, we use the shorthand “output← Gatt.command(input)”

to indicate “simulate sending (COMMAND, input) to Gatt through GG and receive
output”; note, in Section 3.4, the message was always sent from B instead, given the

simpler setting of one honest C and one corrupted B in their proof.

Below, we reproduce the original SFESR, with appropriate modifications to conform

to the syntax of DD-FESR and DoubleSteel.

Simulator SFESR

State variables Description

H [·]← /0 Table of ciphertext and handles in public repository

K ← [] List of progFEVK[F] enclaves and their eidF

B←{} Set of parties set up as decryptors

G ←{} Collects all messages sent to Gatt and its response

B ←{} Collects all messages signed by Gatt

(crs,τ)← N.S1 Simulated reference string and trapdoor

On message (SETUP,role,P) from SDD-FESR:

if mpk=⊥ then

eidKME← Gatt.install(C.sid,progKMEVK)

(mpk,σKME)← Gatt.resume(eidKME, init,crs,C.sid)

if role= encryptor then

send (SETUP,mpk,σKME) to SCC→P

else if role= decryptor then

send (SETUP,mpk,σKME,eidKME) to SCC→P and receive (PROVISION,σ,eidDE,pkKD)

assert (C.sid,eidDE,progDEVK ,pkKD) ∈ B[σ]

(ctkey,σKME)←Gatt.resume(eidKME,(provision,(σ,eidDE,pkKD,eidKME,crs))))

send (PROVISION,ctkey,σKME) to SCC→P

B← B∪{P}

On message (READ,h) from party B to R EP :
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send (DECRYPT,F0,h) to SDD-FESR on behalf of B and receive (DECRYPTED, |(m,k)|)
assert |(m,k)| ̸=⊥
ct← PKE.Enc(mpk,0|(m,k)|)

π← N.S2(crs,τ,(mpk,ct))

ctmsg← (ct,π); H [ctmsg]← h

send (READ,ctmsg) to B

On message (INSTALL, idx,prog) from party P ∈ B∪{C} to Gatt:

eid← Gatt.install(idx,prog)

G [eid].install← (idx,prog,P) ▷ G [eid].install[1] is the program’s code

forward eid to B

On message (RESUME,eid, input) from party P ∈ B∪{C} to Gatt:

assert G [eid].install[2] = P

if G [eid].install[1] ̸= progFEVK[·]∨ (input[0] ̸= run∨ input[−1] ̸=⊥) then

(output,σ)← Gatt.resume(eid, input)

G [eid].resume← G [eid].resume ∥ (σ, input,output)
B[σ]← (G [eid].install[0],eid,G [eid].install[1],output)

forward (output,σ) to P

else

(idx,progFEVK[F],P)← G [eid].install

(run,σDE,eidDE,ctkey,ctmsg,kF,crs,⊥)← input

assert (σF,(init,mpk, idx),(pkDF)) ∈ G [eid].resume

assert (idx,eid,progFEVK[F],pkDF) ∈ B[σF]

assert (idx,eidDE,progDEVK ,ctkey,kF,crs)) ∈ B[σDE]

if H [ctmsg] =⊥ then ▷ If the ciphertext was not computed honestly and saved to H

(ct,π)← ctmsg

((m,k), r)← N.E(τ,(mpk,ct),π)

send (ENCRYPT,m,k) to SDD-FESR on behalf of P and receive (ENCRYPTED,h)

if h ̸=⊥ then H [ctmsg]← h

else return

h←H [ctmsg]

send (DECRYPT,F,h) to SDD-FESR on behalf of P and receive (DECRYPTED,y)

((computed,y),σ)← Gatt.resume(eidF,(run,⊥,⊥,⊥,⊥,⊥,⊥,y))
G [eid].resume← G [eid].resume ∥ (σ, input,(computed,y)))

B[σ]← (G [eid].install[0],eid,G [eid].install[1],(computed,y))

forward ((computed,y),σ) to P

We give SDD-FESR white-box access to SFESR, letting the former freely access the
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internal tapes of the latter. We mark the names of the variables that SDD-FESR from

SFESR in the state variable declaration below. In particular, we use the internal values

of SFESR to keep track of messages sent to the enclaves and their attestation signatures.

For all calls to an enclave, the SDD-FESR simulator always activates SFESR so that these

internal variables can be updated. The simulator queries the environment for additional

inputs by activating the dummy adversary via messages sent to the corrupted parties.

Simulator SDD−FESR

State variables Description

K←{} set of A keypairs and FCERT certificates

KS←{} set of generated keyshares

GG←⊥ The corrupted party on which we run simulated enclaves

G = SFESR.G Collects all messages sent to Gatt and its response

B = SFESR.B Collects all messages signed by Gatt

crs= SFESR.crs Simulated common reference string

On message (SETUP, role,P) from DD-FESR:

if role= encryptor then

if P is honest then

if C is honest then

send (SETUP,encryptor,P) to SFESR

else

send (SETUP,encryptor) to SC P→C and receive mpk,σKME,eidKME

assert (C.sid,eidKME,progKMEVK ,mpk) ∈ B[σKME]

vkatt← Gatt.getPK()

send GETK to FCERT(P ) and receive VK

(spk,ssk)← Σ.Gen(1λ)

simulate sending (SIGN,spk) to FCERT(P ) through P and receive cert

K[P]← (spk,ssk,cert)

send OK to DD-FESR

else

if C is honest then

simulate sending (SETUP,encryptor) to P on behalf of Z
await for message (SETUP,encryptor,P) on SC P→C

send (SETUP,encryptor,P) to SFESR

send OK to DD-FESR
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else

simulate sending (SETUP,encryptor) to P on behalf of Z
await for message (SIGN,spk) from P to FCERT(P )

send OK to DD-FESR

else if role= decryptor then

if P is honest then

if C is honest then

notify SFESR that
(

INSTALL,progDEVK

)
was sent from P to Gatt and capture

response eidDE

send (SETUP,decryptor,P) to SFESR and receive mpk,σKME,eidKME

notify SFESR that (RESUME, init-setup,eidKME,crs,P.sid) was sent from P to

Gatt and capture response (pkKD,eidKME,crs),σinit

send (PROVISION,σinit,eidDE,pkKD) to SFESR and receive (PROVISION,ctkey,σKME)

notify SFESR that (RESUME,complete-setup,ctkey,σKME) was sent from P to Gatt

send OK to DD-FESR

else

simulate sending (SETUP,decryptor) to P on behalf of Z
await for (SETUP,decryptor) message on SCC→P

send (SETUP,decryptor,P) to SFESR

else

if C is honest then

send (SETUP,decryptor,P) to SFESR

send OK to DD-FESR

else

simulate sending (SETUP,decryptor) to P on behalf of Z
await for (RESUME,complete-setup,ctkey,σKME) from P to Gatt

(idx,eid,prog,ctkey)← B[σKME]

assert idx= P.sid∧prog = progDEVK ∧ (σKME, ·,ctkey) ∈ G [eid].resume

send OK to DD-FESR

On message (SIGN,spk) from corrupted party P to FCERT(P ):

forward (SIGN,spk) to FCERT(P ) and receive response cert

K[P]← (spk,⊥,cert)
return cert

On message (KEYSHAREQUERY,x,A,B) from DD-FESR:

// A is corrupted

send (KEYSHAREGEN,x,A,B) to A on behalf of Z and await for (KEYSHAREGEN,
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x,A,B) from A to SCA→B

return OK

On message (KEYSHAREGEN, f ,A,B) from DD-FESR:

if A is honest then

if B is honest then F← F0

else F← f

(spk,ssk,cert)← K[A]

σ← Σ.Sign(ssk,F,B)

KS[F,A,B]← σ

send (KEYSHAREGEN,F,σ,spk,cert) to SCA→B

On message (RESUME,eid, input) from corrupted party P to Gatt:

if G [eid].install[1] = progDEVK ∧ input[0] = provision then

(provision,K S F,eidF,pkDF,σF,F,pid)← input

for (σ,spk,cert) ∈K S F do

assert (spk, ·,cert) = K[A] for some A

if σ ̸∈ KS[F,A,P] then

KS[F,A,P]← σ

send KeyShareGen to F,P through A and receive DD-FESR

(KEYSHAREQUERY,F,A,P)

send OK to DD-FESR

send (RESUME,eid, input) to SFESR

On message (ENCRYPT, input) from SFESR on behalf of P:

send (ENCRYPT, input) to DD-FESR through P and receive (ENCRYPTED,output)

send (ENCRYPTED,output) to SFESR on behalf of DD-FESR

On message (DECRYPT, input) from SFESR on behalf of P:

send (DECRYPT, input) to DD-FESR through P and receive

(DECRYPTED,output)

send (DECRYPTED,output) to SFESR on behalf of DD-FESR

On message *:

forward * to SFESR

We now show, via a series of hybrid experiments, that given the above simulator, the

real and ideal worlds are indistinguishable from the environment’s viewpoint. We

begin with the real-world protocol, which can be considered as Hybrid 0.

Hybrid 1 consists of the ideal protocol for DD-FESR, which includes the relevant

dummy parties, and the simulator S ′DD-FESR, which on any message from the environ-
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ment ignores the output of the ideal functionality, and faithfully reproduces protocol

DoubleSteel. The equivalence between Hybrids 0 and 1 is trivial due to the behaviour

of S ′DD-FESR.

Hybrid 2 replaces all operations of S ′DD-FESR where the protocol DoubleSteel be-

haves in the same way as Steel (except that it sends messages with the full set of

arguments expected by DoubleSteel rather than those in Steel, and receives the equiv-

alent DoubleSteel return values) with a call to an emulated SFESR. Due to the security

proof of the Steel protocol in Section 3.4, we now use the simulator of Hybrid 2 to

simulate FESR with respect to protocol Steel, making the two hybrids indistinguish-

able. An environment that is able to distinguish between the two hybrids could create

an adversary that can distinguish between executions of FESR and Steel; but due to

the UC emulation statement, no such environment can exist in the presence of SFESR.

The reduction to SFESR greatly simplifies the current proof, as we are guaranteed the

security of the secure key provisioning and decryption due to the similarities of these

two phases of the protocols between Steel and DoubleSteel.

Hybrid 3 modifies the simulator of Hybrid 2 by replacing all the signature ver-

ification operations for attestation signatures in DD-FESR with a table lookup from

SFESR.B . The new table lookups for attestation signatures complement the ones en-

acted by SFESR, while capturing behaviour that is unique to DoubleSteel. Similar to

Lemma 3.2, if the environment can distinguish between this hybrid and the previous

one, it can construct an adversary to break the unforgeability of signatures.

Hybrid 4 modifies the simulator of Hybrid 3 by replacing KEYSHAREGEN and

KEYSHAREQUERY requests for any functions with a request for a dummy function

(such as the natural leakage function F0), for all these requests where both the encryp-

tor and the decryptor are honest. The environment is not able to distinguish between

the two hybrids due to the security of the secure channel functionality (as defined

in Section 2.3.6): the secure channel only leaks the length of a message exchanged

between sender and receiver, and assuming that we represent functions with a fixed-

length string (such as a hash of its code), the leakage between this hybrid and the

previous one is indistinguishable.

Hybrid 5 adds an additional check to the simulator of Hybrid 4 before it can run

the provision command on enclave progDEVK through the internal SFESR simulator. The

check ensures that all keyshares passed by the malicious decryptor to the enclave are

signed by a party who has first registered their verification key with the certificate

authority. Then, if the signature has not been generated through a call to the ideal
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functionality but rather through a local signing operation, the simulator notifies the

ideal functionality to update its internal keyshare count. This hybrid essentially re-

places the algorithmic signature verification operations in the previous one with two

table lookups (for both verification key certification and keyshare authenticity). If an

adversary was able to bypass the checks by providing either a certificate that wasn’t

produced by the ideal functionality or a keyshare that didn’t match with the triple of

(F,A,B), they would be able to create an adversary that could break the unforgeability

of signature scheme Σ in the same manner as in Hybrid 3. Thus the hybrid is indistin-

guishable from Hybrid 4.

The simulator defined in Hybrid 5 is identical to SDD-FESR; thus, it holds that

DoubleSteel UC-emulates DD-FESR.

5.2.4 Making Multi-Input functions Stateful

As pointed out in Chapter 3, FESR subsumes Multi-Input Functional Encryption [144]

in that it is possible to use the state to emulate functions over multiple inputs. We

now briefly outline how to realise a Multi-Input functionality using FESR (and by ex-

tension DD-FESR) through the definition of a simple compiler from multi-input func-

tions to single-input stateful functions. To compute a stateless, multi-input function

F : (X ×·· ·×X︸ ︷︷ ︸
n

)→ Y we define the following stateful functionality:

function AggF,n(x,s)

if |s|< n then return (⊥,s ∥ x)

else return (F(s||x), /0) ▷ s is equivalent to the array containing x1, . . . ,xn−1

where input x is in X , the state s is in S , and n is bounded by the maximum size of

S . The above aggregator function is able to merge the inputs of multiple encryptors

because in FESR the state of a function is distinct between each decryptor; therefore,

multiple decryptors attempting to aggregate inputs will not interfere with each other’s

functions. There are several possible extensions to the above compiler:

1. In AggF,n(·), the order of parameters relies on the decryptor’s sequence of invo-

cations. If F is a function where the order of inputs affects the result, malicious

decryptor B could choose not to run decryption in the same order of inputs as

received. It is possible to further extend the decryption function to respect the

order of parameters set by each encryptor. If a subset of encryptors is malicious,

we can parameterise the function by a set of public keys for each party, and ask

them to sign their inputs.
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2. The compiler can be easily extended to multi-input stateful functionalities, by

keeping a list of inputs (as a field) within the state array and not discarding the

state on the n-th invocation of the compiler.

3. One additional advantage of implementing Multiple-Input functionalities through

stateful functionalities is that we are not constrained to functions with a fixed

number of inputs. If we treat the inner functionality to the compiler as a function

taking as input a list, we can use the same compiler functionality for inner func-

tions of any n-arity (we denote this type of functions as JX K→ Y ). On the first

(integer) input to the aggregator, we set it as a special field n in the state, and for

the next n−1 calls we simply append the inputs to the state, while returning the

empty value. On the nth call, we execute the function on the stored state field

(now containing n entries), erase the state and index from memory and wait for

the next call to set a new value to n.

In the next section, we will use the compiler AggSF, which combines the above

defined compiler extensions 2 and 3 to compute any stateful function F with variable

number of inputs (F : JX K×S ×R → Y ×S ) from DD-FESR.

5.3 The GlassVault protocol

First, we provide the formal definition of “Analysis-augmented Exposure Notification”

(EN+), an extension of the standard Exposure Notification (EN), to allow arbitrary

computation on data shared by users. Our definition of EN+ is built on the Exposure

notification functionality FEN of Canetti et al. [84]. Then, we present a description

of protocol GlassVault, and show it UC-realises the ideal functionality of EN+, i.e.,

FEN+ .

5.3.1 Analysis-augmented Exposure Notification

Since EN+ is built upon EN, we first re-state relevant notions used in the UC modelling

of EN. Specifically, EN relies on the time functionality T and the physical reality func-

tionality R that we present in Sections 5.1.3.2 and Section 5.1.3.3, respectively. In par-

ticular, R models the occurrence of events in the physical world (e.g., users’ motion or

location data). Measurements of a real-world event are sent as input from the environ-

ment, and each party can retrieve a list of their own measurements. The functionality
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only accepts new events if they are “physically sensible”, and can send the entire list

of events to some privileged entities such as ideal functionalities. Using T and R as

subroutines, the functionality FEN (presented formally in Section 5.1.3.5), is defined in

terms of a risk estimation function ρ, a leakage function L , a set of allowable measure-

ment error functions E, and a set of allowable faking functions Φ. The functionality

queries R and applies the measurement error function chosen from E by the simulator

to compute a noisy record of reality. This in turn is used to decide whether to mark a

user as infected, and to compute a risk estimation score for any user. The adversary can

mark some parties as corrupted and obtain leakage of their local state, as well as modi-

fying the physical reality record with a reality-faking function. This allows simulation

of adversarial behaviour, such as relay attacks (where an infectious user appears to be

within transmission distance from a non-infectious malicious user). The functionality

captures a variety of contact tracing protocols and attacker models via its parameters.

For simplicity, it does not model the testing process the users engage in to find out they

are positive, and it assumes that once a user is notified of exposure they are removed

from the protocol.

The extension to EN+ involves an additional type of entity to the above scheme,

namely, analyst Ä, who wants to learn a certain function, α, on additional data con-

tributed by users, some of the data might be sensitive (denoted by physical reality field

label SEC). Thus, the users are provided with a mechanism to accept whether an an-

alyst is allowed to receive the result of the executions of any particular function. In

order to receive the result, the analyst needs to be authorised by a portion of exposed

users determined by function K. The choice of this function is a trade-off between live-

ness and security: a higher threshold might result in fewer functions being authorised,

while a lower one might make it easier to authorise undesirable functions by colluding

parties.

We now present a formal definition of FEN+ . Highlighted sections of the function-

ality represent where EN+ diverges from EN.

Functionality FEN+[ρ,E,Φ,L ,AF,K,P ]

The functionality is parameterised by exposure risk function ρ, a set of allowable error

functions E for the physical reality record, a set of faking functions Φ for the adversary

to misrepresent the physical reality, and a leakage function L , as in the regular FEN. AF

is the set of all functions {α | α : JX K×S ×R → Y ×S} an analyst could be authorised
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to compute. K() is a function of the current number of users required to determine the

minimum threshold of analyst authorisations. P is a set of (dummy) parties.

State variables Description

SE List of users who have shared their exposure status and time of

upload

U List of active users; SE∩U = /0

Ũ List of corrupted users

A For each pair of analyst and allowed function, the dictionary A

contains the users that have authorised this pair˜̈A Static set of corrupted analysts

ST State table for (function, analyst) pairs

On message (SETUP,ε∗) from A:

assert ε∗ ∈ E

R̃ε← /0 ▷ Initialise noisy record of physical reality

On message ACTIVATEMOBILEUSER from U ∈ P :

U← U ∥ U

send (ACTIVATEMOBILEUSER,U) to A

On message SHAREEXPOSURE from U ∈ P :

send (ALLMEAS,ε∗) to R and receive R̃∗

R̃ε← R̃ε ∥ R̃∗

if R̃ε[U][INFECTED] =⊤ then

send TIME to T and receive t

SE← SE ∥ (U, t);U← U\{U}

if U ∈ Ũ then

send (SHAREEXPOSURE,U, R̃ε[U][SEC], R̃ε[U][INFECTED]) to A

if U /∈ Ũ∧ R̃ε[U][INFECTED] =⊤ then

send (SHAREEXPOSURE,U,⊥, R̃ε[U][INFECTED]) to A

On message EXPOSURECHECK from U ∈ P :

if U ∈ U then

send (ALLMEAS,ε∗) to R and receive R̃∗

R̃ε← R̃ε ∥ R̃∗;µ← R̃ε[U] ∥ R̃ε[SE]

return ρ(U,µ)

else return error

On message (REGISTERANALYST, α) from Ä ∈ P :
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if α ∈ AF then

send (REGISTERANALYST, α, Ä) to A
for all U ∈ SE∪U do send (REGISTERANALYSTREQUEST, α, Ä) to U

A[α, Ä]← []

On message (REGISTERANALYSTACCEPT, α, Ä) from U ∈ P :

if U ∈ Ũ∨ Ä ∈ ˜̈A then send (REGISTERANALYSTACCEPT,α, Ä,U) to A and receive

OK

A[α, Ä]← A[α, Ä] ∥ U

send (REGISTERANALYSTACCEPT, U,α) to Ä

On message (ANALYSE, α) from Ä ∈ P :

if |A[Ä,α]| ≥ K(|SE|+ |U|) then

(y,ST ′)← α(R̃ε[SE∪U][SEC],ST [α, Ä])

ST [α, Ä]← ST ′

if Ä ∈ ˜̈A then

send (ANALYSED,α, Ä) to A and receive OK

return (ANALYSED,y)

On message REMOVEMOBILEUSER from U ∈ P :

U← U\{U}

On message (CORRUPT,U) from A:

Ũ← Ũ ∥ U

return {(α, Ä) : U ∈ A[α, Ä]}

On message (MYCURRENTMEAS,U,A,e) from A:

if U ∈ Ũ then

send (MYCURRENTMEAS,U,A,e) to R and receive ue
A

send (MYCURRENTMEAS,ue
A) to A

On message (FAKEREALITY,φ) from A:

if φ ∈Φ then R̃ε← φ(R̃ε)

On message LEAK from A:

send (LEAK,L({R̃ε,U,SE})) to A

On message (ISCORRUPT,U) from Z:

return U
?
∈ Ũ
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5.3.2 GlassVault Protocol

In this section, we present the GlassVault protocol. It is a delicate combination of two

primary primitives; namely, (i) the original exposure notification proposed by Canetti

et al. [84], and (ii) the enhanced functional encryption scheme that we proposed in

Section 5.2. In this protocol, the users upload not only the regular data needed for

exposure notification but also the encryption of their sensitive measurements (e.g.,

their GPS coordinates, electronic health records, environment’s air quality). Once an

analyst requests to execute some specific computations on the users’ data, the users are

informed via public announcements. At this stage, users can provide permission tokens

to the analyst (in the form of functional key shares), who can run such computations

only if the number of tokens exceeds a threshold defined by the function K over the

number of parties in the set A of DD-FESR. Due to the security of the proposed

functional encryption scheme, the GlassVault analyst does not learn anything about the

users’ sensitive inputs beyond what the function evaluation reveals.

The protocol supports our goals of providing a generic and accountable analysis

service. GlassVault is generic, as it supports arbitrary secure computations (i.e., multi-

input stateful and randomised functions) on users’ shared data. It is also accountable,

as computations are performed only if permission is granted by a sufficient number

of users and in that the user can choose whether they are willing to share their sensi-

tive data or not, making the collection of information consensual. Besides DD-FESR

functionality, the GlassVault protocol makes use of the physical reality functionality R,

the exposure notification functionality FEN, and the trusted bulletin board functionality

FTBB, described in Sections 5.1.3.3, 5.1.3.5, and 5.1.3.4, respectively.

Protocol GlassVault[ρ,E,Φ,L ,AF,K,P ]

The protocol takes the same class of parameters as defined in FEN+ . We use U to refer to a

normal user of the Exposure Notification System (corresponding to A in DD-FESR). We

use Ä to refer to an analyst (corresponding to DD-FESR’s decryptor, B). Among other

ideal setups, GlassVault leverages the exposure notification ideal functionality

EN[ρ,E,Φ,L ,P ] and functional encryption ideal functionality DD-FESR[AF,P ].

User U ∈ P :

On message ACTIVATEMOBILEUSER from Z:

send ACTIVATEMOBILEUSER to FEN

On message REMOVEMOBILEUSER from Z:
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send REMOVEMOBILEUSER to FEN

On message SHAREEXPOSURE from Z:

send SHAREEXPOSURE to FEN and receive r

send (SETUP,encryptor) to DD-FESR

send (MYCURRENTMEAS,SEC,e) to R and receive ue
SEC

send (ENCRYPT,ue
SEC,K(|DD-FESR.A|)) to DD-FESR and receive (ENCRYPTED,h)

erase ue
SEC and send (ADD,h) to FTBB

On message EXPOSURECHECK from Z:

send EXPOSURECHECK to FEN and receive ρU

return ρU

On message (REGISTERANALYSTREQUEST,α) from Ä:

send (REGISTERANALYSTREQUEST,α, Ä) to Z

On message (REGISTERANALYSTACCEPT,α, Ä) from Z:

send (KEYSHAREGEN,AggSα, Ä) to DD-FESR

send (REGISTERANALYSTACCEPT,U,α) to Ä

Analyst Ä ∈ P :

On message (REGISTERANALYST,α) from Z:

send (SETUP,decryptor) to DD-FESR

for all U ∈ P\{Ä} do send (REGISTERANALYSTREQUEST,α) to U

On message (ANALYSE,α) from Z:

send RETRIEVE to FTBB and receive C
send (ENCRYPT,(|C |,0)) to DD-FESR and receive hn

send (DECRYPT,hn,AggSα) to DD-FESR and receive

(DECRYPTED, |C |)
for h ∈ C do

send (DECRYPT,h,AggSα) to DD-FESR and receive (DECRYPTED,y)

if y ̸=⊥ then return (ANALYSED,y)

5.3.3 Proof of security

We now show that GlassVault is secure.

Theorem 5.2. Let ρ,E,Φ,Φ+,L ,L+,AF,K, and C be parameters such that the fol-

lowing conditions hold:

1. Φ⊂Φ+,
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2. for every input x, it holds that2L(x) = L(L+(x)), and

3. there is a function φ+ ∈ Φ+ such that for every input x, every noisy physical

reality record R̃ε ∈ x, every function φ ∈Φ, and every set of users U,

φ(R̃ε) does not modify the sensitive data stored in record R̃ε[U][SEC], but

φ+(R̃ε) does, and

L(x) does not contain any instruction to leak the contents of R̃ε[U][SEC],

but L+(x) does.

Then, it holds that GlassVault[ρ,E,Φ,L ,AF,K,P ] UC-realises FEN+[ρ,E,Φ+,L+,AF,

K,P ], in the presence of global functionalities T and R.

Proof. We first give a detailed proof for semi-honest adversaries and sketch how this

proof can be adapted for fully corrupted adversaries that diverge from the protocol. We

first construct a simulator SGV.The high-level task of our simulator is to synchronize

the inputs of the analysis functions between the ideal world (where they are stored

in R), and the real world (where they are held in the DD-FESR ideal repository).

The simulator updates a simulated trusted bulletin board by obtaining, through the

leakage function, the secret data for all honest users who have shared their exposure,

and encrypting it through DD-FESR.

When any registered and corrupted analyst executes an ANALYSE request in the

ideal world, the simulator allows the ideal functionality to return the ideal result of the

computation only if the adversary instructs the analyst to correctly aggregate the ci-

phertexts stored in the bulletin board through DD-FESR decryption requests to the ap-

propriate aggregator function. We also simulate the REGISTERANALYST and REGIS-

TERANALYSTACCEPT sequence of operations by triggering the corresponding SETUP

and KEYSHAREGEN subroutines in DD-FESR. Any other adversarial calls to FEN+

such as (SETUP,ε∗) and (FAKEREALITY,φ) are allowed and redirected to FEN, as

long as ε∗ ∈ E and φ ∈Φ).

Simulator SGV

2Note, if x is a labelled dictionary and L returns a dictionary which includes a subset of entries in x
and optionally any other additional records, L+ strictly returns more records than L .
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State variables Description

L+ function to leak anything that L does, as well as the contents

of SEC for all users

T ←{} Table that stores messages uploaded to the Trusted Bulletin

Board

Ũ List of corrupted users

SE List of exposed users

On message (ACTIVATEMOBILEUSER,U) from FEN+:

simulate sending ACTIVATEMOBILEUSER to FEN on behalf of U

On message (SHAREEXPOSURE,U,ue
SEC,v) from FEN+:

simulate sending (SETUP,encryptor) to DD-FESR on behalf of U

if ue
SEC =⊥ then

// simulate honest user:

send LEAK to FEN+ and receive r

ue
SEC← r[U][SEC]

simulate sending
(
ENCRYPT,ue

SEC,K(|DD-FESR.A|)
)

to DD-FESR through U and

receive (ENCRYPTED,h)

T ← T ∥ h
if v =⊤ then SE← SE ∥ U

On message (REGISTERANALYST,α, Ä) from FEN+:

simulate sending (SETUP,decryptor) to DD-FESR on behalf of Ä

for U ∈ P\{Ä} do

simulate sending (REGISTERANALYSTREQUEST,α) to U on behalf of Ä

On message (REGISTERANALYSTACCEPT,α, Ä,U) from FEN+:

if U ∈ Ũ then

await for
(
KEYSHAREGEN,AggSα, Ä

)
from U to DD-FESR

else

simulate sending
(
KEYSHAREGEN,AggSα, Ä

)
to DD-FESR on behalf of U

return OK

On message (ANALYSED,α, Ä) from FEN+:

await for (ENCRYPT,(|T |,0)) from Ä to DD-FESR and for response (ENCRYPTED,hn)

await for (DECRYPT,hn,AggSα) from Ä to DD-FESR and for response (DECRYPTED, |T |)
for h ∈ T do

await for (DECRYPT,h,AggSα) from Ä to DD-FESR and for response (DECRYPTED, ·)
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return OK

On message LEAK from A to FEN:

send LEAK to FEN+ and receive r

return L(r)

On message (FAKEREALITY,φ) from A to FEN:

assert φ ∈Φ

send (FAKEREALITY,φ) to FEN+

On message (CORRUPT,U) from A to FEN:

Ũ← Ũ ∥ U

send (CORRUPT,U) to FEN+ and receive AU

for (α, Ä) ∈ AU do

simulate sending
(
KEYSHAREGEN,AggSα, Ä

)
to DD-FESR on behalf of U

On message * from A to FEN:

send * to FEN+

On message RETRIEVE from A to FTBB:

return T

We argue that for all messages sent by the environment, the ideal world simula-

tor produces messages that are indistinguishable from the DoubleSteel protocol. In

particular:

• SHAREEXPOSURE: when a user U shares their exposure status, SGV is activated.

If U is corrupted, it additionally receives the noisy record of U’s sensitive data,

ue
SEC. For honest users, SGV obtains the same sensitive records by using the

LEAK function. As in the real world, DD-FESR is invoked to encrypt the sensi-

tive data, and the resulting handle is stored in an emulated trusted bulletin board.

In both worlds, the array of stored handles follows a similar distribution as they

are both generated by DD-FESR for the same messages. All other behaviour of

SHAREEXPOSURE is handled by FEN+ in the same way that FEN would.

• REGISTERANALYST: when analyst Ä requests permission to compute a function

α ∈ AF, the simulator registers them as a decryptor in DD-FESR (the same ana-

lyst can request to be registered multiple times, but the DD-FESR functionality

will ignore all but the first request). SGV then emulates a request for REGISTER-

ANALYSTREQUEST for all users. For the semi-honest case, when both honest

and corrupted users are allowed by the environment to accept the request for a
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function, they will ask DD-FESR for a KEYSHAREGEN. SGV learns about these

REGISTERANALYSTACCEPT calls when either the analyst or user is corrupted.

In the former case, SGV proactively sends the request to DD-FESR on behalf of

the user, while in the latter it waits for the adversary to trigger the request. If both

user and analyst were honest, the adversary (in either world) should not learn

that a request was granted. However, given we are in the adaptive user corrup-

tion setting, the simulator has to handle keyshare generation for newly corrupted

users, by requesting keyshare generation to DD-FESR for all functions they had

authorized pre-corruption.

• ANALYSE: for a corrupted analyst, SGV will ensure that they sync the state of the

ideal function α with that of the aggregated AggSα in DD-FESR. To aggregate

all inputs stored in its emulated trusted bulletin board T , the analyst first en-

crypts the integer equal to the size of T and passes it for decryption to AggSα to

initialize it. Then, for all handles stored in T , it also decrypts the corresponding

values to the same aggregator. When all the decryptions have occurred, the final

returned value will be the evaluation of α on the sensitive data of all users; SGV
ignores this value and yields back to FEN+ , which will return the ideal world

result to the analyst.

Since the inputs to the aggregator (the set of uploaded sensitive data to the trusted

bulletin board) in the real world fully correspond to the input of α in the ideal

world, the distributions of states and outputs for AggSα in DD-FESR and for α

in FEN+ are indistinguishable.

• LEAK: on an adversarial request to learn some values from the combination

of noisy record of reality, exposed users, and corrupted users, SGV obtains the

corresponding leakage r from FEN+ , and filters it by the admissible leakage L
for FEN. Filtering is achieved since the condition L(r) = L(L+(r)) holds.

• FAKEREALITY: SGV ensures that the request to modify the noisy record of re-

ality through FEN+ is also admissible in the real world with FEN. Since the

condition Φ⊂Φ+ holds, if the φ is an allowable faking function in Φ, then it is

also allowable in Φ+, so the request is admissible in both the real and the ideal

world.

All other messages are handled by redirecting them from FEN+ to FEN, since both

functionalities behave in the same manner outside the cases we have already outlined.
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While the above simulator guarantees security in the semi-honest setting, it is pos-

sible to design a simulator that allows corrupted parties to diverge from the protocol.

In particular, this simulator would need to handle the case of a malicious user who en-

crypts via DD-FESR dishonestly generated data (in that it does not match with the cor-

rupted user’s physical reality measurements). Following the lead of Canetti et al. [84],

we can account for these malicious ciphertexts by using functions in Φ+ to modify the

noisy record of physical reality in FEN+ . Note that this simulation strategy imposes

additional deviations from the physical reality beyond those unavoidably inherited by

Φ due to its own simulation needs. This makes it harder to justify the usage of the

protocol by an analyst who is interested in the correctness of the data processing.

Additional remarks At a high level, the Glass-Vault protocol can support any com-

putation in a privacy-preserving manner, in the sense that nothing beyond the compu-

tation result is revealed to the analyst; more formally, in the simulation-based model, a

corrupted party’s view of the protocol execution can be simulated given only its input

and output. The GlassVault protocol can be considered as an interpreter that takes a

description of any multi-input functionality along with a set of inputs, executes the

functionality on the inputs and returns only the result to the analyst.

Recall that the primary reason the GlassVault protocol offers accountability is that

it lets users have a chance to decide which computation should be executed on their

sensitive data. This is of particular importance because the result of any secure com-

putation (including functional encryption) would reveal some information about the

computation’s inputs. However, having such an interesting feature introduces a trade-

off: if many users value their privacy and decide not to share access to their data, the

analyst may not get enough to produce any useful results, foregoing the collective ben-

efits this kind of data sharing can engender [255]. One way to solve such a dilemma

would be to integrate a mechanism to incentivise users to grant access to their data for

such computations (e.g., by using a blockchain token as a reward); however, even then

careful considerations are required, as the framing of why a user is asked to disclose

their information can impact how much they value privacy [7].

5.3.4 Performance

In the GlassVault protocol, an infected user’s computation and communication com-

plexity for the proposed data analytics purposes is independent of the total number of
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users, while it is linear with the number of functions requested by the analysts. An ana-

lyst’s computation overhead depends on each function’s complexity and the number of

decryptions (as each decryption updates the function’s state). The cost to non-infected

users is comparable to the most efficient EN protocols that realise FEN (such as the

protocol in [84, Section 8.5]): besides passively collecting measurements of sensitive

data, no other data-analytics operation is required until the SHAREEXPOSURE phase.

While the costliest component of the protocol is the functional encryption module,

it is possible to build an efficient implementation of GlassVault due to the construction

of DoubleSteel, which relies on efficient operations facilitated by trusted hardware.

5.4 Enhancing Decentralised Contact Tracing

A contact tracing system is called centralised when a central authority is in control of a

permanent identifier for every user, and enables users to exchange ephemeral identifiers

with each other that only the authority can map back to the permanent identifier. A user

testing positive uploads the ephemeral identifiers of people they have come into contact

with to the authority, who can map the ephemeral identity of those other users to their

permanent identities and notify them of infection. A second order feature of this kind

of protocols is that the authority can use this information to build a general contact

graph of all encounters had by infectious users.

Centralised contact tracing (CCT) systems have thus been shown to be more effec-

tive at preventing spread of diseases than their decentralised equivalent, as the contact

graph can be used for various functions (among them identifying a super-spreader user

with mild symptoms [154]). Much of the debate around the use of centralised servers

however identified the privacy risks of putting such a contact graph at the availability

of the government. Some have argued that this has to some extent been harmful for

containing the pandemic [297], as the push for a privacy preserving system made the

additional analysis advantages of centralised systems a secondary concern.

We now argue that Analysis-augmented Exposure Notification, as implemented

by GlassVault allows to provide the same advantages of centralised contact tracing

schemes, while providing greater user privacy and preserving accountability.

At a high level, centralised contact tracing computes a function that, given as input

the set of contact tracing users and their location in the real world over time, returns a

multi-graph where each users represents a node, and each edge is an occurrence of the

two users being in proximity of each other.
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Implementing Contact Graph G in GlassVault. We now show how to support one of

the main capabilities of centralised contact tracing, i.e., building contact graphs, within

the GlassVault platform.

We begin by discussing about how this is achieved within the GlassVault and EN+

formalisms, and then take a more concrete approach based on the [84] scheme as a

concrete example.

Our modular approach in the previous section uses UC composition to describe

GlassVault as a protocol that embeds a generic exposure notification scheme as a sub-

routine, without the need to exposing any of its internal. However, for some appli-

cations such as the one we will be showing next, it is necessary for the analyst to

extract some information directly related to the exposure notification algorithms’ im-

plementations. Roughly, we can call α the subset of records for the physical reality

functionality R related to what the user sends to other parties as part of the exposure

notification scheme. Conversely β are the records each user receives while running

the scheme. The two types of records are related together by some function γ such

that γ(α) = β if the user that produced α was in proximity to the user that received β

Exposed GlassVault users can request this kind of information to encrypt when sharing

their data, so that they can be passed as the arguments of analysts’ functions. We now

give a concrete instantiation of what each of this parameters are in a sample contact

tracing protocol, namely the π̂ protocol of Canetti et al. [84].

Let chirp← Chirp(s,meas) be a function that produces an ephemeral key from a

seed; in this case, we take the set of fields A∗ used to produce meas to be equal to t,

the time when the chirp is produced. Chirp is an invertible function, such that there is

an equivalent Chirp−1 such that Chirp−1(s,Chirp(s,meas)) = meas. Let K be the map

of seeds each infected user used to generate their pseudonyms; and let X be a vector of

triples (U,chirp, t), where U is a user, and chirp is the identifier U received at time t.

Moreover, query is a set of coordinates in the adjacency matrix, i.e., two users.

function CG(X,K,Chirp,query,state)

if G ̸∈ state then

G← []

for (U,chirp, t) ∈ X do

t0← ⌊t⌋
for (U′,s) ∈ K do

if Chirp−1(s,chirp) = t0 then
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G[U,U′]← G[U,U′] ∥ (chirp, t)

state← G

else return G[query]

The above function implements the centralised contact tracing contact graph.

As with any other GlassVault function, the users is able to choose whether to share

their data with the protocol, and the set of all users can vote on which institutions are

allowed to play the analyst role by authorizing them to execute analytics over their data.

While the implemented contact graph will not be as faithful as the one implemented

in a centralised contact tracing system, since some users might withhold their contact

information, we argue that our design offers increased protection from the virus for

privacy-conscious users. Users in countries where the only available contact tracing

option is centralised might not choose to join such a system to preserve their privacy,

at the cost of not being notified when they are exposed to the virus through contact with

someone who is using the system. GlassVault users will instead benefit from the ex-

posure notification system, even if they choose not to share any additional information

such as the list of their contacts.

5.5 Example: infections heatmap

In this section, we provide a concrete example of a computation that a GlassVault ana-

lyst can perform: generating a daily heatmap of the current clusters of infections. This

is an interesting application of GlassVault, as it relies on collecting highly sensitive

location information from infected individuals.

Heatmapk,q(x,s) is defined as a multi-input stateful function, parameterised by k:

the number of distinct cells we divide the map into, and q: the minimum number

of exposed users that have shared their data. The values of these parameters affect

the granularity of the results, computational costs, and privacy of the exposed users.

Thus, they need to be approved as part of the KEYSHAREGEN procedure (in that the

parameters’ values are hard-coded in the Heatmap program, so that different parameter

values require different functional keys).

Given the full set of exposed users’ sensitive data, the Heatmap function filters it

to the exposed users’ location history for the last T days (the maximum number of

days since they might have been spreading the virus due to its incubation period), and

constructs a list of T ×k matrices, where an entry in each matrix u contains the number

of hours within a day an infected individual spent in a particular location. Location data
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is collected once every hour by the user’s phone, and divided into k bins. The u matrix

rows are in reverse chronological order, with the last row of the matrix corresponding

to the locations during the most recent day and each row above in decreasing order

until the first row which contains the locations T days ago.

Heatmap maintains as part of its state a list, m, of T -sized circular buffers (a FIFO

data structure of size T ; once more than T entries have been filled, the buffer starts

overwriting data starting from the oldest entry). On every call with input x, the function

allocates a new circular buffer b for each matrix u it constructed from x, and assigns

each of u’s rows to one of b’s T elements, starting from the top row. Each element in b

now contains a list of k geolocations for a specific day, with the first element containing

the locations T days ago, and so on. For any buffer already in m, we append a new

zero vector, effectively erasing the record of that user’s location for the earliest day. If

there is a buffer that is completely zeroed out by this operation, we remove it from m.

If we have |m| ≥ q, we return the row-wise sum of vectors ∑
b∈m

T −1

∑
i=0

b[i]. The result is

a single k-sized vector containing the total number of hours spent by all users within

the last T days: our heatmap.

For simplicity of exposition, we assume that the input x is already a fully formed

list of T × k matrices containing a single user’s location data over the last T days.

While GlassVault functionalities typically expect a subset of R’s noisy record of reality

for fields in SEC, turning those records in a list of matrices can be delegated to the

aggregator run by GlassVault to turn individual user’s ciphertext into the multi-input

list x.

The pseudocode below uses the following notation conventions:

• Given matrix z, the notation z[i, j] denotes accessing the i-th row and j-th column

of z.

• z[i, :] denotes the row vector corresponding to the i-th row of z; z[:, j] is the

column vector corresponding to the j-th column

• We denote by CircularBuffer(n) the creation of a new n-sized circular buffer.

Appending an item to the buffer is accomplished through concatenation operator

∥ . After n items have been appended to a buffer, it will overwrite the first record

in the buffer, and so on
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function Heatmapk,q(x,state)

if state= /0 then m← []

for c ∈m do

c← c ∥ 0⃗

if ∀i ∈ c : i = 0⃗ then m←m\ c

for u ∈ x do

b← CircularBuffer(T )

for {i = 0; i < T ; i++} do

assert
k−1

∑
j=0

u[i, j] = 24

b← b ∥ u[i, :]

m←m ∥ b

y← 0⃗

if |m| ≥ q then

for u ∈m do

for {i = 0; i < T ; i++} do

y← y+u[i, :]

return y

For the results’ correctness, an analyst should run the function (through a decryp-

tion operation) once a day. As the summation of user location vectors is a destructive

operation, the probability that a malicious analyst can recover any specific user’s input

will be inversely proportional to q.

The security proof of Theorem 5.2 is either in the semi-honest setting or requires

a fake reality function in which a user can tamper with their own client applications

to upload malicious data (terrorist attack [287]). Since there is no secure pipeline

from the raw measurements from sensors to a specific application, unless we adopt the

strong requirement that every client also runs a TEE (as in [149]) or uses their device

hardware Root-of-trust to certify the authenticity of peripheral readings (as in [243]),

it is impossible to certify that the users’ inputs are valid. Like most other remote

computation systems, GlassVault cannot provide blanket protection against this kind

of attack. However, due to its generality, GlassVault allows analysts to use functions

that include “sanity checks” to ensure that the data being uploaded are at least sensible,

in order to limit the damage that the attack may cause. In the heatmap case, one such

check could be verifying that for each row of u, it must hold that its column-wise sum

is equal to 24, since each row represents the number of hours spent across various
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locations by the user in a day (assuming the user’s phone is on and able to collect

their location at least once an hour throughout a day). To capture this type of attack

in the ideal functionality FEN+ , we instantiate it with a FAKEREALITY function in Φ+

such that, if a malicious user U uploads this type of fake geolocation, it will update

U’s position within the noisy record of physical reality to match U’s claimed location,

while making sure that other users who compute risk exposure and have been in close

contact with U will still be notified.

We highlight that Bruni et al. [66] propose an ad-hoc scheme that produces similar

output. Their scheme relies on combining infection data provided by health authorities

with the mass collection of cellphone location data from mobile phone operators. Un-

like GlassVault, the approach in [66] does not support any mechanism that allows the

subjects of data collection to provide their direct consent and opt-out of the computa-

tion.



Chapter 6

Conclusion

At this point SGX is just so broken

that it seems like its only purpose is

to provide PhD students something to

write a paper on :)

Usmann Khan
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This thesis reflects research on formalising Trusted Execution Environments span-

ning the last five years, a time marked by significant changes in Confidential Comput-

ing. The technology has solidified its position as a cloud computing solution, shifting

away from consumer markets, with SGX being discontinued for any consumer-grade

Intel CPU. Hardware-assisted security might have increased its role in the consumer

market, but only in the form of the less powerful TPMs, which are now required to

run the latest version of the Windows operating system [209]. While we welcome the

increased usage of TEEs in the cloud setting as a promising development to increase

accountability in cloud computing vendors and applications, another other major trend

since the start of our work should cause some concern. Due to the difficulty of devel-

oping secure enclave programs, the industry has shifted from process-based isolation

to virtualisation, allowing unmodified application to run on the current generation of

Confidential Computing hardware. With the complexity of TEE implementations, it

is difficult enough to reason about the small Trusted Computing Base of enclaves for

realising secure applications as we have done in this work. Trusting the entirety of a

virtualised operating system opens the door to a much larger number of exploits than

those we already have.

Over the last few chapters, we have gone through various stages of the lifecycle of

a protocol that relies on TEEs, from defining Steel and proving its security under UC

in Chapter 3, to showing how to use realise a privacy-preserving in Chapter 5, via a

significant detour to revisite the foundations on how we model TEEs cryptographically

in Chapter 4. We now make some observation about limitations of our work, and future

research directions for each chapter.

Chapter 2: Background As a first observation, we note that our background chapter

includes pointers to several surveys on TEEs, from their architecture to application

and attacks. However, we find two gaps in the existing literature: a lack of surveys

on protection mechanisms against TEE attacks, and one on formalising TEEs. We

have attempted to address the latter in our Section 2.2.4, but further work is needed to

establish what the relationship between the listed work are, and what elements of what

tools are available to approach formalisation at each level of the TEE development

lifecycle (including the gaps). Our Section 2.2.3.1 provides an overview of protection

mechanisms for a specific class of attacks, but we believe that a more comprehensive

survey for additional vulnerabilities and defences is necessary.
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Chapter 3: Steel Our work on Steel was accepted as part of the 2021 IACR Public

Key Cryptography Conference, and published in its proceeding as [53]. Despite under-

going the process of review, in the very last stages of compiling this thesis, we became

aware of a distinguishing attack between the real and ideal world.

The attack stems from our formulation of functions in the ideal world diverging

from how enclave programs manage functional key provisioning in the real world. The

ideal functionality FESR stores the state of each function for which it had produced a

decryption key in a table, indexed by the party that received the key and the function.

If a decryptor requests the generation of a functional key for a function it already has

access to, it will overwrite the value of the function state on the table with a new

initial state. In the real world, a decryptor party could choose to install multiple copies

of a functional enclave, and request authorisation to compute that function from the

decryption enclave. If the party has successfully been granted a functional key, the

decryption enclave will authorise all copies of the functional enclave for that party to

decrypt under that function. This discrepancy does not lead to a forking attack, as the

attestation signatures encode the enclave ID, so the adversary could not claim that the

outputs of two enclaves were produced by the same function, nor can they fork the

enclave at any arbitrary point in execution (unless it is a deterministic function, and

the adversary replays all of its input to the second copy until the desired state). The

attack is primarily a modelling issue, and does not affect regular Functional encryption

or Iron due to their lack of state.

It is not obvious what a desirable fix should be; as it stands, both the ideal func-

tionality and the protocol seem flawed. One option would be to modify the ideal func-

tionality as to allow a decryptor to maintain multiple copies of the same function, to

capture the behaviour of the protocol. Alternatively, both ideal functionality and the

protocol could only allow one copy of each function: this would require modifying

the functionality, by checking that P [B,F] is not empty to avoid overwriting it with

/0, and the decryption enclave in Steel by similarly keeping track of previous key gen-

eration requests. Finally, we could choose to preserve the current ideal functionality

behaviour by allowing a decryptor to reset the function state when requesting a new

key. This would require modifying Steel to either force the functional enclave to erase

its memory on a new keygen request, or to go through key provisioning after every

run execution, as to check with progDE that it still is the only authorised enclave to

compute the function. Having a liveness check for each decryption enclave might be a

welcome change in the Steel architecture, as it would allow us to augment the protocol
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with rollback protection using the technique described in the next paragraph. While it

is possible to apply one of these fixes and adjust the simulator accordingly (since the

adversary is notified on every KEYGEN message), some considerations are required on

how this would affect the DD-FESR variant and its simulator, which uses the FESR

simulator in a black box way.

Chapter 4: Modelling Our new models for global attestation captures existing func-

tionalities in the literature, as well as other variants of TEEs not previously proven in

UC. While we showed somewhat informally how to capture these using our language

of oracles, our work requires further validation in proving that our setups can replace

the existing ones, and that the formalisation is robust enough to be adopted by other

researchers for their own TEE-hybrid protocols. At the risk of being overly ambitious,

we believe that Gmod
att should become the canonical functionality used in UC proofs.

This would serve the dual purpose of forcing the protocol designer to think about the

feature requirements of the enclave and what attacks would be allowable in their set-

tings, while also providing theorems to realise their version of the setup from weaker

versions that we are more likely to develop. The final goal of this modelling project

would be to formalise a real TEE implementation, and to produce a chain of wrapper

protocols that can lead us from this version of Gmod
att to GPST

att , or even stronger versions.

It seems like much more bridging work will be required between the cryptography and

system communities to produce such a model, and while this work has not yet found

a venue for publication, we have seen some early interest in this line of work from

members of the formal method community who specialise in formalising TEEs, with

an early version of this work being accepted to the 3rd PAVeTrust workshop.

As a first step, further examples of how to apply theorems 4.1 and 4.2 will be

needed. In Section 4.5, we presented an example of a wrapper protocol to remove

the Rollback attack interface from Gmod
att by using the Store,Fetch oracle interfaces

presented in Section 4.3.3. While this example helped us address the attack on Steel

introduced earlier in the chapter, it is not entirely satisfying for two reasons. First, it

is an extremely simple protocol that does not involve any assisting enclaves, and thus

does not serve as a good example of a security proof with a more complex simulator

that needs to handle the interaction of multiple enclaves running on a combination of

trusted and untrusted parties. Furthermore, it does not really provide a satisfying solu-

tion to rollback attacks in the real world. Preventing rollback attacks in a setting where

we have access to some trusted storage is a straighforward idea, but no realistic TEE
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has managed to achieve this property. In Section 2.2.3, we examined how existing

trusted protection mechanisms developed on trusted counters are generally easy to by-

pass, and that multiple solutions have been designed to provide a distributed rollback

protection mechanism. Since most of these works do not originate from the crypto-

graphic community, they often lack a clear treatment of the network and adversarial

model, or a satisfying proof of security. A likely target for future work is providing a

new proof of equivalence to remove Rollback attacks from Gmod
att through one of those

protocols, without relying on local trusted storage. It should be possible to easily port

protocol W from Section 4.5 onto a shell with access to a distributed storage function-

ality, such as the one presented in Section 4.3.6. We believe it should then be possible

to show that one of the rollback protection protocols in the literature (or a new proto-

col that combines some of their features) can UC-realise the registry functionality (or

similar).

There are further opportunities for future work on the Gmod
att model, in particular

building on the formalisation of our TEE Zoo of Section 4.3 with further features and

attacks. In particular, given recent interest in GPU accelleration due to the commer-

cial implications of machine learning, formalising enclaves with access to an oracle

for a heterogenous computing device might enable the development of much needed

privacy and safety protocols in the field. Additionally, there is room to explore a larger

class of corruptions from the TEE literature, including partial corruption (where only

some enclaves running on a party can be accessed by the adversary, a typical setting

in the cloud computing scenario ) or attacks that allow interrupting the enclave at a

more granular level of execution than a subroutine. Further work is also needed in

analysing different types of attestation protocols, and how they affect our modelling

and equivalence theorems.

Finally, we might want to consider additional models of TEEs that allow enclaves

with different feature (or attacker) oracle sets to co-exist. The motivation for providing

this extension would be performance, as some of the oracles required to implement a

feature (or defend against an attack) might cause an undesirable performance penalty.

It might actually be desirable for the purposes of real world realisations to show that

a smaller set of more powerful (and expensive) enclaves can provide security for a

larger number of enclaves through a protocol. To go back to our running example, it is

possible to modify Steel to become rollback resilient by simply running a rollback re-

silient Decryption Enclave, even if the Functional Enclaves are susceptible to rollback

attacks. Such a protocol would leverage the same ideas as the Section 4.5 protocol, but
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use the Decryption Enclave as its trusted storage implementation.

Chapter 5: GlassVault There are several possible directions for future research in

relation to GlassVault. An immediate goal would be to provide an implementation, as

well as some sample data analytics workloads; examine their run-time, and optimise

the system’s bottlenecks. Since GlassVault’s analytics results could influence public

policy, it is interesting to investigate how this platform could be equipped with mech-

anisms that allow to non-repudiably verify the authenticity of the output of analysts.

Currently functional decryption results are deniable by design. Another appealing fu-

ture research direction is to provide a more fine-grained approach to our centralised

contact tracing implementation in GlassVault. The functional encryption scheme could

enforce, for example, a threshold version of the contact graph application, enforcing a

user defined “privacy budget” on how many query the analyst may run. More broadly,

DoubleSteel could be used for other data science tasks that require large scale collec-

tion of user data, something that we are likely to see more of in the future, especially in

a time of crisis. It is crucial that we refine the design and test deployment of such tools

at a time when discussions about the values of privacy and consent and its tradeoffs

with public utility can be discussed without the urgency of a global emergency.
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